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Introduction

In the following, we are going to present a new tool in the study of absolute Galois
groups.

Given a field F , it is of primary interest to classify its finite extensions. That is,
given a separable closure F̄ /F , to understand the structure of the absolute Galois
group Gal(F̄ /F ). This is a very hard task. So much so that, at the present, a lot of
problems remain open, even for the field F = Q of rational numbers.

We present a construction that translates this algebraic problem into a geometri-
cal setting. Namely, we assign to each field F an Hausdorff, compact and connected
topological space XF , whose finite covering spaces are in one-to-one correspondence
with finite field extensions of F . This is possible under the assumption that F con-
tains Q(µ∞): i.e. F is of characteristic zero and all roots of unity µ∞ already belong
to this field. We are going to prove the following.

Theorem (1.3.1). Let F ⊇ Q(µ∞) be a field. There is a functor from the category
of finite étale algebras over F to the category of finite covering spaces over XF

FinÉtAlg /F → FinCov /XF ,

which is a category equivalence.

In particular, it follows that the étale fundamental group of XF over a point
χ ∈ XF is isomorphic to the absolute Galois group of F : that is, we have an
isomorphism

πét(XF , χ) ' Gal(F̄ /F ).

The construction is due to P. Scholze and R. Kucharczyk, who presented the
idea in their recent paper [7]. This work is essentially a restructuring of their work,
together with a record of some attempts to extend the limits of this construction.
This thesis is not going to present a self-contained theory, but rather the pedant
dissection of a mathematical object. As such, the techniques used will vary largely
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in complexity during the exposition. We aim to present every step in the most ac-
cessible way possible, trying to relegate harder techniques into the latest sections.
Despite our efforts, a sound familiarity with algebraic tools is required.

In the first chapter, the Galois theories of finite extensions and topological cover-
ing spaces are going to be briefly introduced. That settled, we are going to present
the main construction. We build the topological space XF̄ as the product of an
infinite numbers of copies of the solenoid

Q∨ = Hom(Q,S1),

hence we obtain a compact Hausdorff connected topological space. We then discuss
a natural action of the absolute Galois group G on XF̄ , to then define the desired
space XF as the quotient G\XF̄ . The action being proper, XF retains all topological
properties of XF̄ . In the last section the main theorem is proven.

In the second chapter, the topological space XF is further studied. Namely, we
concentrate on the relation between the number of path components of XF and the
multiplicative structure of F . We say that a field F is multiplicatively free if its
multiplicative group F× is free.

Theorem (2.1.6). If F is countable and all its finite extensions are multiplicatively
free, then XF is path connected.

A field satisfying the hypotheses of the above theorem is F = Q(µ∞).

We then compute sheaf cohomology groups of XF with coefficients in a locally
constant sheaf A. In particular, when A is a torsion abelian group we find out that
cohomology groups are related to the cohomology of the absolute Galois group G;
that is, there are isomorphisms

Hp(XF , A) ' Hp(G,A) ∀p > 0.

Cohomology groups with integral coefficients do not admit such an explicit descrip-
tion, nonetheless they fit in short exact sequences

0→ Hp(XF ,Z)→ Hp(XF ,Q)→ Hp(XF ,Q/Z)→ 0 ∀p > 0.

In these sequences, we also know the central term, i.e. Hp(XF ,Q) =
∧p F̄× ⊗Q.

A discussion on the necessity of the hypothesis on roots of unity follows, in which
we suggest a different construction which does not require said hypothesis: for every
characteristic zero field F we build a topological space ZF , which is compact and
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Hausdorff but not connected. We then show that when ZF is connected, it is home-
omorphic to XF (µ∞), hence this new construction ultimately reduces to the initial
setting.

In the last chapter we investigate an analogous construction in the realm of
algebraic geometry. That is, we present a connected complex scheme XF , whose
finite étale covering maps are in correspondence with finite étale algebras over F .

Theorem (3.3.7). Let F ⊇ Q(µ∞) be a field. There is a functor from the category
of finite étale covers over SpecF to the category of finite étale covers over XF

FinÉtCov / SpecF → FinÉtCov /XF

which is a category equivalence.

In particular, it follows that the étale fundamental group of XF over a point x̄ ∈
XF is isomorphic to the absolute Galois group of F : that is, we have an isomorphism

πét(XF , x̄) ' Gal(F̄ /F ).





CHAPTER 1
Construction

This chapter aims to present in a crude and direct way the main construction. This
construction, although coming from ideas in algebraic geometry, is elementary in
nature and can be completely covered with some knowledge in topology and num-
ber theory. We aim to build a bridge from algebra to geometry, that will allow us
to translate questions about field extensions to properties of topological covering
spaces. The theories describing these objects already present striking similarities:
we now present the key aspects of these theories, leaving the first chapters of [19] as
a reference for proofs and details.

The theory of finite field extensions. Let F be a field and F̄ /F a separable
closure. For any finite Galois extension E/F , we consider the group Gal(E/F ) of
automorphisms of E as an F -algebra. The finite Galois extensions of F , connected
by inclusion maps, form a filtered system whose colimit is F̄ . The corresponding
Galois groups form an inverse system whose limit

Gal(F̄ /F ) = lim←−E Gal(E/F )

is called the absolute Galois group of F . The limit is intended as a limit of topological
groups: given all finite Galois groups the discrete topology, the topology on the
limit Gal(F̄ /F ) is the coarsest to make all projections continuous. The resulting
topological group is a profinite group.

Definition 1.0.1. A finite étale algebra E over F is a F -algebra that is isomorphic
to the product of a finite number of finite separable extensions Ei/F :

E = E1 × · · · × Er.

7
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The absolute Galois group G = Gal(F̄ /F ) is the key component in the classi-
fication of all finite étale algebras and, in particular, of all finite extensions of F .
Consider the controvariant functor

HomF (•, F̄ ) : FinÉtAlg /F → FinSet

sending a finite étale algebra E = E1× · · · ×Er over F to the finite set of F -algebra
homomorphism E → F̄ ; that is, the set

HomF (E1 × · · · × Er, F̄ ) =
r∏
i=1

HomF (Ei, F̄ ).

The natural G-action on each Ei translates into a continuous action on the set of
homomorphisms and the following result holds.

Theorem 1.0.2 ([19, Theorem 1.5.4]). The just defined functor

HomF (•, F̄ ) : FinÉtAlg /F → Gal(F̄ /F )- FinSet

is an anti-equivalence between the category of finite étale algebras over F to the
category of finite sets equipped with a continuous G-action.

An application of the Yoneda Lemma shows that the group of automorphism of
the functor above is

HomF (F̄ , F̄ ) = Gal(F̄ /F ),

the absolute Galois group of F .

The theory of topological covering spaces. Let X be a connected topolog-
ical space.

Definition 1.0.3. A continuous map of topological spaces p : Y → X is a trivial
finite covering if there is a finite discrete set D and a homeomorphism X ×D → Y
making the following diagram commute

X ×D Y

X;

p

more generally, p : Y → X is a finite covering if every point in X has an open
neighbourhood U ⊆ X such that the restriction p : p−1(U) → U is a trivial finite
covering.
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A morphism of covering spaces Y1, Y2 → X is a continuous map Y1 → Y2 which
commutes with the covering maps; if both Y1, Y2 are connected, this morphism is a
covering map itself. In particular we can consider a connected finite cover p : Y → X
and the group Aut(Y |X) of cover automorphims of Y ; that is the homeomorphisms
Y → Y that commute with p. We call p a Galois cover if the continuous map induced
by p on the quotient

Aut(Y |X)\Y → X

is an homeomorphism.
Let Y → X be a Galois cover. The group Aut(Y |X) determines all intermediate

finite connected covers Y → Z → X. That is, given said tower, Y → Z is a Galois
cover whose group Aut(Y |Z) is naturally identified with a subgroup H < Aut(Y |X);
in this case, the quotient cover H\Y → X is isomorphic to Z → X. Vice versa,
every subgroup H < Aut(Y |X) determines an intermediate cover Y → X, whose
corresponding subgroup of Aut(Y |X) is H itself.

In analogy with the previous theory, we may fix a point x ∈ X and consider the
functor

Fibx : FinCov /X → FinSet

that sends a cover p : Y → X to the fiber p−1(x), which is a discrete finite set. The
key object for the classification of the topological covering spaces of X is the étale
fundamental group of X in x, which is defined as the group of automorphisms of the
fiber functor:

πét
1 (X,x) = Aut (Fibx) .

If we fix a Galois cover Y → X and restrict the fiber functor to the full sub-
category of finite covers of X that are quotient of Y , we obtain a finite group
Aut(FibYx ) = Aut(Y |X). The inverse system of Galois covers gives an inverse sys-
tem of the corresponding automorphisms group, whose limit coincide, as an abstract
group, with the étale fundamental group:

πét
1 (X,x) = Aut (Fibx) = lim←−Y Aut(FibYx ) = lim←−Y Aut(Y |X). (1.1)

This gives the fundamental group a profinite topology.

Theorem 1.0.4. The fiber functor splits through an equivalence

Fibx : FinCov /X → πét
1 (X,x)- FinSet

between the category of finite covers over X to the category of finite sets equipped
with a continuous action of the étale fundamental group πét

1 (X,x).

When X is not only connected, but also path connected and semi-locally simply
connected, the theorem is well-know and the étale fundamental group πét

1 (X,x) co-
incide withe the profinite completion of the usual fundamental group π1(X,x) of the
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space [19, Corollary 2.3.9].

This is enough to come up with a genuinely interesting question, which the
present chapter is going to answer.

Question. Given a field F , can we find a topological space XF whose finite
covers are in correspondence with finite extensions of our base field F? That is, a
space that comes equipped with an anti-equivalence

FinÉtAlg /F → FinCov /XF ? (1.2)

One may immediately think the solution lies in a clever use of classifying spaces,
but the question is trickier than it looks. The main difficulty is hidden in the nec-
essary step of profinite completion: although it is not hard to build a topological
space with a fixed fundamental group, is not clear how to choose one that behaves
as desired under completion. We are thus going to take a different approach, which
is not only feasible but, as a nice perk, will produce a much more concrete space to
study.

1.1 The solenoid

In this section, we present a curious topological group that plays a fundamental
role in our construction. It is known in literature as the solenoid. One can define
the solenoid S as the Pontryagin dual of the discrete group of rational numbers
Q∨. Concretely, you take the group of rational numbers, equip it with the discrete
topology, and consider the set of group homomorphisms into the circle

Q∨ = Hom(Q,S1),

equipped with the compact-open topology. A base of said topology is given by the
family of subsets

V (K,U) = {f ∈ Hom(Q, S1) | f(K) ⊆ U},

where K ⊆ Q varies among all compact subspaces and U ⊆ S1 among all open ones.
With said topology and composition as the operation, Q∨ turns into a topological
group [5, Theorem 23.15].

Notice that is not enough to choose where to send 1 to determine a group ho-
momorphism Q → S1: sending 1 to a fraction of the full circle α ∈ S1 leaves open
some choices about where to send 1/N , for every integer N ; to be precise, exactly N
choices which differs by an N -th of the full angle. These choices are not independent
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and it is easy to convince yourself that an uncountable number of choices is required!
We thus expect this space not to be a copy of the circle, but a quite “bigger ”space.
Nonetheless, it shares with the circle some nice topological properties.

Proposition 1.1.1. The topological space S is Hausdorff, compact and connected.

Proof. We can think at the rational numbers Q as a direct limit of rank 1 free
subgroups:

Q = lim−→n
1
nZ

where the limit is taken over the poset of positive integers ordered by divisibility.
The solenoid is thus a limit over the opposite poset:

S = Q∨ = lim←−n Hom( 1
nZ, S

1).

These duals are much easier to compute: since any homomorphism is determined by
the image of 1, all objects in the limit coincide with the circle! That is, our space is
a limit of circles

S = lim←−n S
1
(n)

where the map S1
(mn) → S1

(n) is the m-th power map. Limit of Hausdorff, compact

connected spaces is again Hausdorff, compact and conencted [3, theorem 6.1.20].

This space comes with a weird pathology: it is connected but not path-connected.
It has, in fact, an infinite (uncountable) number of path components! We are going
to present a useful proposition to compute the number of path components.

Proposition 1.1.2. Let M be a torsion free discrete abelian group. We have a
natural isomorphism

π0(M∨) ' Ext1(M,Z).

Proof. From the short exact sequence of topological groups 0 → Z → R → S1 → 0,
we get

Hom(M,R)→ Hom(M, S1)→ Ext1(M,Z)→ 0;

where the last term vanishes because R is divisible, and thus have trivial cohomol-
ogy. We are going to show that Hom(M,R) is mapped to the path component of
the origin of M∨.

The space Hom(M,R) is path connected: given any point ϕ : M → R, the path
γ(t,m) = t · ϕ(m) connects it to the origin. The continuous map from the exact
sequence thus sends this space into the path component of 0. We claim surjectivity.
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Let x be a point in said path component and choose a path γ connecting it to
the origin. For every m ∈M , we have a path t 7→ γ(t,m) in S1. We can lift all these
paths to the universal covering space

R

M S1.
γ(−,m)

γ̃(−,m)

In order for γ̃(t,−) to be a path in Hom(M,R), at every fixed time t the map
m 7→ γ̃(t,m) has to be a group homomorphism; let’s show that is the case. Consider

t 7→ γ̃(t,m) + γ̃(t, n)− γ̃(t,m+ n).

Since the projection onto S1 is trivial by hypothesis, this has to be a continuous map
into the discrete subgroup of the integers Z in R, thus constant. Also, for t = 0 we
know it vanishes.

Whit this result, we can compute the number of path components of the solenoid.

Theorem 1.1.3. The topological space S is not path connected. In particular, S has
an uncountable number of connected components.

Proof. From the previous proposition 1.1.2 we have an isomorphism

π0(S) = Ext1(Q,Z).

We need to show that the latter is an uncountable abelian group! In order to see
that, consider the injective resolution of Z

0→ Z→ Q→ Q/Z→ 0,

where both Q and Q/Z are divisible, hence injective. We can use this resolution to
compute Ext1(Q,Z), applying Hom(Q,−) and taking cohomology; doing so, we find
that Ext1(Q,Z) is the cokernel of the map

Hom(Q,Q)→ Hom(Q,Q/Z).

The first group is isomorphic to Q, while the latter is uncountable:

Hom(Q,Q/Z) = lim←−n Hom( 1
nZ,Q/Z) = lim←−nQ/Z,

where transition maps are multiplication by the index. We can explicitly construct
this limit as a subgroup

{(an)n ∈
∏
N>0

Q/Z | an = m · anm ∀n,m ∈ N>0},

and observe we obtain, in fact, an uncountable group.
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Notice that, from the proof of Proposition 1.1.2, we actually get more informa-
tion: namely, the path-component of the identity is isomorphic to Hom(Q,R) ' R.
Therefore the fundamental group at 0 of the solenoid is trivial: π1(S, 0) = 0. We
would love to use this data to conclude that there are no covering spaces but, as S
is not path connected, the usual theory of covering spaces does not apply! In fact,
the solenoid does have covering spaces of infinite degree, but, as we are now going
to show, not of finite degree.

Theorem 1.1.4. The solenoid S has no non-trivial finite covering space.

To prove this theorem, we need a strategic lemma that will allow us to exploit
the compactness hypothesis.

Lemma 1.1.5 (Compactness Argument). Let X = lim←−αXα the limit of a co-filtered
system of compact Hausdorff spaces. Let π : Y → X be a finite covering map. There
exists an index α0 and a finite covering map π0 : Y0 → X0 that fits in a pull-back
diagram

Y Y0

X X0.

π π0

Proof. We first have to recall that the topology on X is defined via the base of sets
U ⊆ X that are pre-image of some open set Uα ⊆ Xα from somewhere in the inverse
system. We can restrict our attention to those open sets of this base that trivialize
the covering map π. Because X is compact, we can choose a finite number of them
forming an open cover, say U1, . . . , Un.

We can now think at our covering space as a collage: we can assemble Y gluing
together d copies of each open set Ui. Precisely, there exist finite sets D1, . . . , Dn

and continuous functions

φij : Uij = Ui ∩ Uj → {f : Di → Dj | f is bijective},

where the codomain is intended as a discrete set, which we can think as the instruc-
tions to glue together Y . These have to satisfy a cocycle condition φjk ◦ φij = φik
for all u ∈ Uijk = Ui ∩ Uj ∩ Uk. Because of our clever choice of the trivializing open
sets Ui, we can find an index β such that all Ui are pre-image of some open sets of X1!

We need to choose another finite open cover V1, . . . , Vm ⊆ X of sets that are both

1. pre-image of some open set Vα ⊆ Xα from somewhere in the inverse system,

2. contained in some intersection Uij (hence trivializing),
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3. all instructions φij , restricted to V are constant.

There is no problem in doing that since all φij are locally constant. Now, we find
an object X0 in the inverse system such that all Vi and all Uj are pre-image of some
open subset of X0, and glue together a covering space Y0 → X0. This covering map
pulls back to π by construction.

This argument is a very fundamental step in our construction. We are going to
discuss later why the compactness hypothesis is so important for us.

Proof of theorem 1.1.4. Let Y → S a finite connected covering space. From the
description as limit S = lim←−n S

1
(n) and the compactness argument 1.1.5 we find an

index k and a finite cover Y ′ → S1
(k) that fits in a pull-back diagram

Y Y ′

S S1
(k).

We know all finite covering maps into the circle: these are all m-th power maps
S1 → S1, x 7→ xm. Said otherwise, the previous diagram can be written as

Y Hom( 1
mkZ,S

1)

Hom(Q, S1) Hom( 1
kZ, S

1),

where all maps are induced by natural inclusions. Notice that, in order to compute
this pull-back, we can take duals. That is, Y is the dual of the push-out of the dual
diagram; thus the thesis follows once we convince ourselves that the following is a
push-out diagram:

1
kZ

1
mkZ

Q Q.

This is exactly to say the map Z→ Z given by multiplication by m, tensored by Q
gives an isomorphism. Hence Y → S is trivial.

The list of properties of the solenoid is far from over and could go on for a
while. We content ourselves with the properties we are going to need in the following
discussion. In this last proposition, we aim to underline the arithmetic nature of this
object.
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Let AQ be the ring of adeles over the field of rational numbers Q. We define the
ring of finite adeles Afin

Q as the restricted product [16, Chapter 5.1] of all completions
of Q over their ring of integers, that is all p-adic fields Qp with respect to their ring
of integers Zp ⊆ Qp. This is the subring

Afin
Q = {(ap)p ∈

∏
pQp | ap ∈ Zp for all but finitely many p}.

With the topology we get declaring open all subgroups of the form∏
p∈S

Qp ×
∏
q /∈S

Zq,

for every finite set of primes S, Afin
Q is a topological ring. We define AQ = R × Afin

Q
and get a topological ring, with the product topology. Both R and Afin

Q are closed
additive subgroups of AQ. The diagonal embedding Q ↪→ AQ has discrete image [16,
Theorem 5.11]. The adele ring is strictly related to the solenoid S.

Lemma 1.1.6. There is an isomorphism of topological groups

S ' AQ/Q.

Also, the injective map Hom(Q, µ∞) ↪→ Hom(Q,S1) induced by ι : µ∞ ↪→ S1 corre-
sponds to the inclusion

Afin
Q ↪→ AQ/Q,

the isomorphic image of the second factor through the projection AQ → AQ/Q.
Furthermore, the injective map Hom(Q/Z, µ∞) ↪→ Hom(Q, µ∞) induced by Q →
Q/Z corresponds to the natural inclusion Ẑ ⊆ Afin

Q .

Proof. The statement follows writing in a different way the limit (1.1) we presented
in the proof of Proposition (1.1.1): writing Q = lim−→n

1
nZ, we get

S = lim←−n Hom( 1
nZ,S

1) = lim←−n Hom( 1
nZ,R/Z) = lim←−nR/nZ, (1.3)

where the maps in the last limit are induced by the identity R → R. Consider the
copy of the group of profinite integers

Ẑ ⊆ Afin
Q = 0× Afin

Q ↪→ AQ.

For every integer n, from the closed group embedding of the first factor R = R×0 ↪→
AQ, x 7→ (x, 0) we get the continuous and closed group homomorphism

ϕn :
R
nZ
→ AQ

Q + nẐ
,
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which we claim to be an isomorphism. First, notice the map is well defined, since
for every x ∈ nZ we have

x 7→ (x, (0)p) = (x, (x)p) + (0, (−x)p) ∈ Q + nẐ.

That ϕn is injective is clear: an element in the kernel of R → AQ/Q + nẐ is a
real number x such that x ∈ Q ∩ nẐ = nZ. Surjectivity follows from the strong
approximation theorem: the cokernel AQ /R+Q+ nẐ is trivial because R+Q+ nẐ
generates all AQ [16, Corollary 5.9]. These ϕn are compatible with the maps in the
projective system of limit (1.3), giving us the isomorphism

lim←−nR/nZ = lim←−nAQ/Q + nẐ = AQ/Q,

where the last equality follows from AQ being complete and nẐ being a system of
open subgroups with empty intersection.

For the second statement, notice we are interested in the subgroup

lim←−nQ/nZ ↪→ lim←−nR/nZ = AQ/Q,

where every n-th component map is induced by the same lift of ι : µ∞ = Q/Z →
S1 = R/Z to an inclusion Q ⊆ R. Composing Q ⊆ R with ϕn one gets a map

ψn :
Q
nZ
→ AQ

Q + nẐ

that factors through Afin
Q /nẐ, since (x, 0) = (0, (−x)p) in AQ /Q. This shows also

that the image of ψn coincides with the image of the diagonal embedding Q ↪→
Afin
Q → Afin

Q /nẐ. This proves the map is surjective, since Q + nẐ generates Afin
Q

because of the strong approximation theorem [1, Chapter II, 15], thus

lim←−nQ/nZ = lim←−nA
fin
Q /nẐ = Afin

Q .

Finally, notice that through the identifications of (1.3), we can write the last
inclusion as

Hom(Q/Z, µ∞) = lim←−n Hom( 1
nZ/Z,Q/Z) ↪→ lim←−n Hom( 1

nZ,Q/Z) = Hom(Q, µ∞),

where the n-th map is Z/nZ→ Q/nZ, the quotient of the natural inclusion Z ⊆ Q.
The image in Afin

Q /nẐ is therefore the copy of the integers through the diagonal

embedding Z ⊆ Q ↪→ Afin
Q → Afin

Q /nẐ. Computing the inverse limit we get

lim←−n Z/nZ = Ẑ ⊆ Afin
Q .
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1.2 Main construction

Let’s fix a base field F of characteristic 0 that contains all roots of unity µ∞. Fix
an algebraic closure F̄ /F and call G = Gal(F̄ /F ) the corresponding absolute Galois
group. From this point on, these are going to be our assumptions. The hypothesis
on the roots of unity is quite restrictive, we are going to dedicate a section of the
next chapter to its discussion.

Equip the multiplicative group F̄× with the discrete topology and consider its
Potryagin dual (the construction we had for Q in the previous section): consider the
set

Hom(F̄×, S1),

equipped with the compact-open topology. This is a topological group. Let ι : µ∞ ↪→
S1 be your favorite injective homomorphism and consider the subspace of characters
that agree with said embedding

XF̄ = {χ ∈ Hom(F̄×, S1) | χ|µ∞ ≡ ι : µ∞ → S1}.

This space comes with a natural continuous left action of the absolute Galois group
G, given by pre-composition with the inverse: σ · χ(x) = χ(σ−1(x)). This is not
the space we were looking for, having no non-trivial finite covering spaces, but we
are almost there. In our construction XF̄ has the role of a universal covering space,
although not exactly being one. The space with the desired properties is the quotient

XF = G\XF̄ .

Let’s start by showing that XF̄ has some nice geometrical properties.

Theorem 1.2.1. The topological space XF̄ is non-empty, Hausdorff, compact and
connected.

Proof. The multiplicative group F̄× is divisible: that is, every number x ∈ F̄× has
an n-th root. Its torsion free quotient F̄×tf = F̄×/µ∞ is thus a torsion-free abelian
group that is uniquely divisible, i.e. multiplication by rational numbers is defined:
a Q-vector space. The exact sequence

0→ µ∞ → F̄× → F̄×tf → 0

splits, because µ∞ is divisible, thus injective. Hence we can write F̄× = F̄×tf ⊕ µ∞
and consequently the isomorphism

Hom(F̄×,S1) = Hom(F̄×tf ,S
1)×Hom(µ∞, S1)
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as topological groups. We now see how our space XF̄ as a coset of the subgroup
Hom(F̄×tf ,S

1) of characters that are trivial on all roots of unity. In particular, we
have a homeomorphism

XF̄ ' Hom(F̄×tf , S
1).

The latter space is much easier to study (but would be much harder to define a nice
G action on it). We fix a basis I for F̄×tf over Q and we write this space as a product
of infinitely many copies of the solenoid:

Hom(F̄×tf , S
1) = Hom

(⊕
i∈I

Q,S1

)
=
∏
i∈I

Hom(Q, S1) =
∏
i∈I
S.

The claim follows, the solenoid being nonempty, Hausdorff, connected and compact.

In the previous proof, we got an idea of how horrendous is the space we are
working with. It has to be connected, but not path-connected, like the solenoid, and,
at the same time, it must be, in some sense, infinite-dimensional, unlike the solenoid
which we think, in some sense, one dimensional. This allows us to deduce some other
geometric properties of this space, his étale fundamental group for example.

Corollary 1.2.2. The space XF̄ has no non-trivial finite covering space.

Proof. Let ∆: S →
∏
i∈I S the diagonal embedding and p : A →

∏
i∈I S be a finite

covering map. The pullback

∆∗A A

S
∏
i∈I S

p

∆

is a finite covering map on the solenoid of the same degree. According to Theorem
1.1.4 the solenoid has no non-trivial covering space of finite degree, therefore p has
to be trivial as well.

We are left to investigate the Galois action. We wish for the action to be enough
well behaved to produce us covering spaces when we take quotients. It would be
enough for the action to be properly discontinuous and free, but in this case, a
bit more is true, so that our quotient spaces are going to maintain the Hausdorff
property as well.

Theorem 1.2.3. The action of G on XF̄ is proper and free.
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Unlike the above discussion, this aspect is not geometric in nature, but algebraic!
To understand this action, we need to exploit the definition, back to the natural
action of G on the field F̄ . The content we are seeking could not come from anything
but a number theory lemma.

Lemma 1.2.4. Let F be a field of characteristic 0, not necessarly containing µ∞,
and let F̄ /F be an algebraic closure. The corresponding Galois group G = Gal(F̄ /F )
operates freely on the set

J (F̄ , k) = {χ : F̄× → k× | χ is a group homorphism, injective on µ∞},

for any field k.

Proof of the Lemma. Let σ ∈ G a nontrivial element and χ ∈ J (F̄ , k) a character.
We need to show that σχ 6= χ. Our goal is to find an element y ∈ F̄× such that
σ(y)/y is a non-trivial root of unity ζ; we could then conclude that

1 6= χ(ζ) = χ(σ(y)/y),

hence that χ(σ(y)) 6= χ(y) and, therefore, that the action is free.

First things first, let’s get rid of everything on which σ acts trivially: upon replac-
ing F by the fixed field of the closure of 〈σ〉, we can assume that σ is a topological
generator of G (which, in turn, is now a pro-cyclic group). Notice that, as claimed,
there is no element of F̄ \F on which σ acts trivially: take α ∈ F̄ \F and let E/F be
the Galois closure of F (α)/F ; the group Gal(E/F ) is a nontrivial quotient of G by
a closed subgroup of finite index (that is Gal(F̄ /E)), which is therefore open. The
dense subgroup generated by σ intersects the open cosets of this group, thus there
exists an integer n such that σn acts non-trivially on α. Hence σ cannot fix α.

On the previous assumption, the base field F cannot be closed by radicals: there
exist a prime p such that the p-th power map F× → F× is not surjective. For sake of
contradiction, assume the contrary. Then, F must at least contain all roots of unity
and G has to act trivially on them. From the short exact sequence 0→ µp → F̄× →
F̄× → 0 associated to the p-th power map, we get the exact sequence in cohomology

F× F× H1(G, µp) 0,

where the last term vanishes by Hilbert90. The cohomology group, in this case, is
easily described: G is acting trivially on µp, hence H1(G, µp) ' Hom(G, Z/pZ). But
G, being pro-cyclic, must have some non-trivial cyclic quotient, thus Hom(G, Z/pZ)
cannot be trivial for every p.
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Therefore there exists a prime p and a number a ∈ F such that xp−a is irreducible
in F . Picking a solution y in F̄ , we must have that σ(y)/y 6= 1 is a p-th root of
unity, as desired.

Proof of the theorem. The action being proper is equivalent to the map

G×X → X ×X
(g, x) 7→ (gx, x)

being proper, which follows from compactness of all spaces involved. The action
being free follows from Lemma 1.2.4, choosing the target field k to be the complex
numbers C, where we identify S1 with the unit circle.

The aforementioned quotient XF = G\XF̄ is therefore a non-empty, Hausdorff,
connected and compact topological space.

1.3 Galois correspondence

We built a nice topological space XF̄ , equipped with a natural action of G that is
proper and free. We can therefore consider the quotient space XF = G\XF̄ , which
we know, from the properties of the G-action, to be Hausdorff, compact and con-
nected. This is the space we were seeking: in this section, we are going to prove that
we have a correspondence between finite field extensions E/F and finite covers of XF .

For any finite field extension E/F , the same construction can be carried on.
The extension F̄ /E is an algebraic closure as well and the action of the subgroup
Gal(F̄ /E) < G on XF̄ is proper and free too, therefore the topological space

XE = Gal(F̄ /E)\XF̄

is Hausdorff, compact and connected. By definition, it comes equipped with a fi-
nite covering map XE → XF whose degree is equal to the index of the subgroup
Gal(F̄ /E) in G.

We now wish to extend this construction to a functor FinÉtAlg/F → FinCov/XF .
Given a finite étale algebra E1 × · · · × Er over F , the natural finite covering of XF

to consider is the disjoint union

E1 × · · · × Er 7→ XE1 t · · · tXEr .

The image of maps through this functor is equally straightforward to define: every
field homomorphism E1 → E2 over F is either trivial or an inclusion; for which we
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already know how to get a covering map. The general case reduces to the case of
fields, just notice that a morphism between finite étale algebras over F breaks into
components

HomF (E1 × · · · × Er, E′1 × · · · × E′s) =
r∐
i=1

s∏
j=1

HomF (Ei, E
′
j),

and we have the same exact decomposition on the other side, for map of covering
spaces over XF . It is not hard to believe that this construction is functorial. The
following proposition establishes the main result.

Theorem 1.3.1. The functor defined above is a category equivalence

FinÉtAlg /F → FinCov /XF .

Proof. We are going to show that the functor is fully faithful and essentially surjec-
tive.

Let’s start by showing full faithfulness. Let Y1 → Y2 be a morphism between
two connected covers of X which is a covering map itself [19, Lemma 2.2.11]. We
can find a Galois cover Y → X with a cover morphism Y → Y1 → Y2. Both
Y → Yi are Galois covers with automorphism group corresponding to subgroups
Aut(Y |Y1) < Aut(Y |Y2) < Aut(Y |X). In particular, every morphism Y1 → Y2 pulls
back to a morphism Y → Y2 and then lifts to an automorphism of Y ; in the opposite
direction, given an automorphism of Y , this induce a map between the quotients by
the two subgroups. Maps between connected covers are therefore determined by the
automorphisms group of a common Galois cover, hence we might reduce to this case.
Consider a finite Galois extension E/F . By construction, the map XE → XF is the
quotient map of the (proper and free) Gal(E/F )-action; thus Gal(E/F ) has to be
the cover automorphism group, as claimed.

For essential surjectivity, observe first that

lim←−E XE = lim←−E Gal(F̄ /E)\XF̄ = XF̄ ,

where the first limit is taken over finite Galois extensions E/F , and therefore the
second one over a cofinal system of subgroups ordered by inclusion. The intersec-
tion of those subgroups is trivial, hence the last equality. Let Y → XF a con-
nected finite covering of degree d, we wish to find a finite Galois extension E/F
and a morphism of covering spaces XE → Y . This would be enough to con-
clude: XE → Y would be a Galois covering, hence the quotient by the subgroup
H = Aut(XE |Y ) < Aut(XE |XF ). This correspond, by the already proven full faith-
fulness of our functor, to a subgroup H < Gal(E/F ). Both XEH and Y would be
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quotient of XE by the same automorphism group H, hence isomorphic.

Let’s find said Galois cover. The pull-back

Ỹ Y

XF̄ XF

is trivial, because all finite covers of XF̄ are, of the same degree d; that is Ỹ = XF̄×D
for a finite set D with d elements

By a compactness argument, the pull-back must trivialize at an index E/F in the
limit (the extension we are looking for): consider two complementary open subset
U, V of Ỹ (say a connected component and its complement), each of them can be
covered by a finite number of opens subset Ui, Vj that are pull-back of some open
subset of some space in the projective system of the covers (YE)E , via an argument
identical to the one at the start at the proof of Lemma 1.1.5. There is a space XE1

fitting in a double cartesian diagram

Ỹ YE1 Y

XF̄ XE1 XF

such that all Ui, Vj are pull backs of open subsets Ũi, Ṽj ⊆ YE1 , where their unions⋃
i

Ũi,
⋃
j

Ṽj

form two complementary open subsets of YE1 . That is, we found an index E1/F
such that the pull-back cover YE1 → XE1 is no longer connected. We can now focus
on a non-trivial connected component of YE1 and repeat the argument until, after a
finite number of iterations, we get a trivial cover YE → XE .

The pull-back YE → XE is thus isomorphic to XE ×D. Let d0 ∈ D and consider
the d0-component:

XE × {d0} XE ×D YE Y

XE XE XE XF .

The composition of the upper horizontal maps is a continuous map between finite
covering spaces of XF , respecting the projections to XF , hence a covering morphism.
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Corollary 1.3.2. Let χ ∈ XF a character. We have an isomorphism

Gal(F̄ /F ) ' πét
1 (XF , χ).

Proof. In the proof of the above theorem we showed a little more, namely that the
equivalence

FinÉtAlg /F
op → FinCov /XF

sends the inverse system of Galois object over F isomorphically into the inverse
system of Galois object over XF . In particular

Gal(F̄ /F ) = lim←−E Gal(E/F ) by definition

= lim←−E Aut(XE |XF ) by full faithfulness

= lim←−E Aut(FibXE
χ ) by Galois theory

= Aut(Fibχ) by [18, Tag 0BMU]

= πét
1 (XF , χ). by definition.

https://stacks.math.columbia.edu/tag/0BMU




CHAPTER 2
Topological Properties

It would be nice to start this chapter with a picture of XF and proceed to comment
on its evident geometric properties but, unfortunately, it is not that simple. As we
mentioned, this topological space is highly infinite-dimensional and, furthermore, we
have no way to visualize the Galois action on XF̄ . The only option we are left with
is to compute some of its topological invariants, hoping this will shed some light on
the shape of this mysterious space. We are going to describe its path components,
then compute its cohomology groups.

Before we start, a warning is due to the reader. This chapter is going to get a
lot more technical, straight from its first section. The number of path components
of XF does strictly depend on the nature of the inclusion F× ↪→ F̄×; thus a wide
range of number theory is going to be invoked while proving the following theorems.
Meanwhile, computation of the cohomology algebra is carried on in the realm of
algebraic topology, and a fair familiarity with spectral sequences is needed.

2.1 Path components

Let’s start by making explicit the interesting connection between the set of path
components of XF̄ and the structure of the field F̄ itself.

25
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Consider the commutative diagram

0 0 0

0 Hom(F̄×tf ,R) Hom(F̄×tf ,S
1) Ext1(F̄×tf ,Z) 0

0 Hom(F̄×,R) Hom(F̄×, S1) Ext1(F̄×,Z) 0

0 Hom(µ∞,S1) Ext1(µ∞,Z) 0

0 0.

δ

α

δ

β

δ

Rows are exact because part of the long exact sequences derived from

0→ Z→ R→ S1 → 0. (2.1)

The initial zeros are easy to justify: there are no non-trivial homomorphisms between
F̄× or its torsion-free quotient and Z, because the firsts are divisible while the latter
is not, and there is no map µ∞ → R because R has no torsion elements. The terminal
zeros appear because R is divisible, hence an injective Z-module. Columns are exact
because part of the long exact sequences derived from

0→ µ∞ → F̄× → F̄×tf → 0.

Notice that S1 is divisible and Ext2(−,Z) always vanishes, to place the remaining
zeros. Commutativity follows from bifunctoriality of Hom(−,−).

In the first steps of our construction we fixed an element ι ∈ Hom(µ∞, S1). Its
pre-image via the vertical map α is exactly XF̄ which is, by exactness, a coset of
Hom(F̄×tf ,S

1) in Hom(F̄×,S1). We are interested in describing δ(ι). Consider the
pull-back extension

0 Z M µ∞ 0

0 Z R S1 0.

ι

By the snake lemma, the central vertical map is an inclusion as well, thus M coincides
with the pre-image of µ∞ ⊆ S1 in R, that is Q. We call this short exact sequence
the “exponential extension”:

0→ Z→ Q→ µ∞ → 0 ∈ Ext(µ∞,Z).
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We can apply Hom(µ∞,−) to the above morphism of short exact sequences: in the
map between the associated long exact sequences we find the commutative diagram

0 Hom(µ∞, µ∞) Ext1(µ∞,Z) 0

0 Hom(µ∞,S1) Ext1(µ∞,Z) 0.

δ

δ

The left groups are zero because neither Q nor R has torsion points, while the right
groups vanish because both Q both R are divisible, thus injective. The non-trivial
vertical map is induced by ι and is an isomorphism by the snake lemma (or by
noticing that the image of any morphism µ∞ → S1 has to be made entirely of
torsion points). In particular, ι ∈ Hom(µ∞, S1) corresponds to the identity idµ∞ ∈
Hom(µ∞, µ∞). The upper connecting homomorphism δ sends the identity idµ∞ to
the class of Ext1(µ∞,Z) corresponding to extension given by the short exact sequence
0 → Z → Q → µ∞ → 0 we started from [20, Theorem 3.4.3]. The lower connecting
morphism δ in (2.1) is the same we find in the big commutative diagram (2.1); by
commutativity, we can thus conclude that ι ∈ Hom(µ∞, S1) is sent by the lower
isomorphism δ to the class of the exponential extension

[0→ Z→ Q→ µ∞ → 0] ∈ Ext1(µ∞,Z).

Back to diagram (2.1), the fiber through β over this extension is a coset of Ext1(F̄×tf ,Z),
that we call Ext1

exp(F̄×,Z).

Proposition 2.1.1. There is a G-equivariant bijection

π0(XF̄ ) ' Extexp(F̄×,Z).

Proof. By Proposition 1.1.2, the first row of the big diagram above

0→ Hom(F̄×tf ,R)→ Hom(F̄×tf ,S
1)→ Ext1(F̄×tf ,Z)→ 0,

is exactly the quotient of the middle group by the identity’s path component. By
commutativity of diagram, since XF̄ is a coset of Hom(F̄×tf , S

1) ⊆ Hom(F̄×,S1), its
path components correspond to the classes in δ(XF̄ ). In particular, since XF̄ is the
pre-image of ι through the vertical map α, then δ(XF̄ ) has to be the pre-image of
the exponential extension through the right vertical map β, by commutativity of
(2.1).

It would be interesting to understand the Galois action on Ext1
exp(F̄×,S1), since

the subset of fixed extensions Ext1
exp(F̄×,S1)G corresponds to the set of path com-

ponents of XF , by the previous proposition. Notice the first set has quite a lot
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of elements since XF̄ has an uncountable number of path-components because the
solenoid does. Intuitively, if Gal(F̄ /F ) is small, in some suitable sense, then it’s hard
to believe that it acts transitively on connected components. In this case, we expect
XF not to be path-connected.

From the above proof, we can build ourselves a better intuition of the problem.
Let’s focus on the first row in the big diagram (2.1) above, that is, on the identity’s
component. Fix a basis {xi} for F̄×tf and a section F̄×tf → F̄×. A character χ : F̄× →
S1 is determined by the image χ(xi) of every element in our basis and the choice
of χ( 1

nxi) between a finite set of values, for every integer n. Formally, this is the
interpretation of the short exact sequence

0→ Hom(Q/Z,S1)→ Hom(Q,S1)→ Hom(Z,S1)→ 0.

A path corresponds to a smooth change of χ(xi), which moves the image of all n-th
roots accordingly on the circle. Hence, connected components are determined by
elements of the first group of the above sequence, that is, the choice of images on the
inverse system of the roots 1

nxi. For the G action to identify two path-components,
we thus need to have a Galois automorphism F̄ → F̄ which for every n sends
1
nxi → ζn

1
nxi, where ζn is a root of unity that depends on the components.

This interpretation is far from being precise but should give a good enough
intuition to believe the following proposition, which treats the case in which there’s
no such automorphism. This is certain to happen when, however we choose the basis
{xi} for F×tf , too many of the roots { 1

nxi} are fixed by the G-action, that is, live in
the base field F .

Theorem 2.1.2. If there is an element α ∈ F× which is not a root of unity and has
an n-th root in F× for infinitely many integers n, then π0(XF ) is uncountable.

We recall that a subgroup B ⊆ A is said to be saturated if, for all elements a ∈ A
and positive integers n such that an ∈ B, the element a belongs to B. The saturation
of a subgroup C ⊆ A is the smallest saturated subgroup B ⊆ A containing C.

Proof. Let M be the saturation in F× of the infinite cyclic subgroup generated by
α; notice that µ∞ ⊆ M . By hypothesis Mtf = M/µ∞ is a G-invariant Z-module
contained in a rank 1 Q-vector space, which contains the free group N generated
by α and 1

nN for infinitely many n. The inclusion M ↪→ F̄× is dual to a surjective
continuous map XF̄ → Homexp(M,S1) (where by Homexp we denote the characters
that restricted to µ∞ coincide with ι), which is G-equivariant. The target space is
naturally homeomorphic to the Pontryagin dual of Mtf, we thus have a surjection

XF →M∨tf ,
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that is surjective on path components π0(XF )→ π0(Mtf). By Proposition 1.1.2, we
are left to prove that Ext1(Mtf,Z) is uncountable.

We can show Ext1(Mtf,Z) is uncountable computing explicitly the cohomology
group by mean of the injective resolution Q→ Q/Z of Z. The group is the cokernel
of the map

Hom(Mtf,Q)→ Hom(Mtf,Q/Z).

The first group is countable, as the image of every non-zero element m ∈Mtf deter-
mines a unique homomorphism. The second is uncountable: writing Mtf = lim−→n

1
nN

(notice that n varies on an infinite index set J ⊆ Z, determined by the particular
structure of the module), we obtain a limit realized by

{(an)n ∈
∏
J

Q/Z | an = m · amn ∀n,mn ∈ J}.

Which is easy to see it is not countable.

Going in the opposite direction, we could ask for F×tf to be a lattice in F̄×tf , so
that we would have all the desired freedom on roots of unity.

Definition 2.1.3. We say that F is a multiplicatively free field if the torsion free
quotient of its multiplicative group Ftf is a free Z-module.

Although this removes the obstruction of Theorem 2.1.2, the existence of those
field automorphisms is not guaranteed. We are going to build the desired maps
in the only conceivable way: via a limit procedure, working our way up through
finite extensions of F . A slightly stronger version of the previous definition is thus
required.

Definition 2.1.4. We say that F is stably multiplicatively free if all its finite ex-
tensions are multiplicatively free.

Fields satisfying this hypothesis (and the one on roots of unity) exist and are of
some interest. We can fix a significant example.

Theorem 2.1.5. The field Q(µ∞) is stably multiplicatively free.

Proof. By the Kronecker–Weber theorem we know Q(µ∞) to be the maximal abelian
extension of Q . The following argument is divided in two main steps: first, we prove
that all finite extensions of Q are multiplicatively free, then show how this implies
the claim for all finite extensions F/Q(µ∞).

Let K/Q be a number field and OK be the ring of integers of K, the proof relies
on two main arithmetic facts:
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1. The Dirichlet’s Unit Theorem, stating that the group O×K of integral units is
isomorphic to a product

O×K = T × Zr,

where T is a finite group and the rank r is a positive integer.

2. The group J of fractional ideals of OK is freely generated by prime ideals [11,
Chapter 3, Theorem 16, ex. 31 (c)].

One has a surjective map from K× to the subgroup P ⊆ J of principal ideals, sending
every element x ∈ K× to the ideal it generates. The kernel of this map is the group
of units O×K . Hence, we have a short exact sequence

0→ O×K → K× → P → 0.

Notice that P ⊆ I is a submodule of a free module (by 2), hence a free module itself.
Therefore the exact sequence splits, producing an isomorphism

K× = P ×O×K = P × Zr × T,

where we used (1) as well. When we pass to the torsion free quotient, we kill T and
remain with a free group, hence the claim.

Let’s extend the result to finite extensions F/Q(µ∞): we are going to prove that
every finitely generated subgroup A ⊆ F×tf has a finitely generated saturation AFsat,
so that we can apply [12, Lemma] to the countable group F×tf to conclude it is free.

Since Q(µ∞)/Q is an abelian extension, we can find a finite extension K ′/Q such
that F/K ′ is abelian: in order to do that, notice that F is a simple extension Q(µ∞),
let’s say F = Q(µ∞, α) for some α ∈ F ; then K ′ = Q(α) is finite over Q and F/K ′

is Galois with a group isomorphic to a subgroup of Gal(Q(µ∞)/Q), hence abelian.

Let K be the finite extension of K ′ generated by the finitely many generators
of A (a lift of the generators in F ) and i (so that we don’t have to worry about a
special case later), so that A ⊆ K×tf ⊆ F

×
tf and K/Q is finite.

Since K×tf is free (K being a finite extension of Q), the saturation AKsat of A in
K×tf is free and finitely generated. Consider the inclusion

0→ AKsat → AFsat → Q→ 0.

Notice that upon taking −⊗Q all saturations are sent to AF̄sat, the saturation in the
algebraic closure, hence the quotient Q is a torsion group. We wish to show that
Q is finite, so that AFsat has to be generated by finitely many elements as well: the
union of those generating AKsat and a lift of those generating the quotient Q. We are
going to prove that, for any prime p, the following holds:
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� If ζp ∈ K, then the p-torsion Q[p] is finite.

� If ζp /∈ K, then the p-torsion Q[p] = 0 is trivial.

The claim follows since K contains finitely many roots of unity.
Let n be the positive integer such that ζpn /∈ K while ζpn−1 ∈ K. We claim that

Q[p] has exponent pn−1 (that is, multiplication by pn−1 kills the whole quotient). For
sake of contradiction, suppose the converse: let a ∈ F be an element whose image
in Q has order pn and b = ap

n ∈ K.
First we show that µ(x) = xp

n − b is the minimal polynomial of a over K. We
prove it is irreducible: suppose not, then by [6, Theorem 8.1.6] there exists b′ ∈ K
such that (b′)p = b, thus µ has a factor of the form xp

n−1 − b′. There is a root of µ,
let’s say aζkpn , such that (

aζkpn
)pn−1

= b′ ∈ K.

In particular a has order pn−1 in Q, providing a contradiction: µ is irreducible, hence
the minimal polynomial of a over K.

Notice that, because F/K is abelian, its intermediate extension K(a)/K has to
be normal: µ(x) splits in K(a). In K(a) we find every root of µ(x) and

ζpn =
ζpna

a
, that is K(ζpn) ⊆ K(a).

Since K 6= K(ζpn), xp
n − b is reducible in K(ζpn); arguing as above, we find that

ap
n−1 ∈ K(ζpn), hence

K ( K(ap
n−1

) ⊆ K(ζpn) ⊆ K(a).

� If ζp /∈ K, which is to say n = 1, the above chain of inclusions forces the equality
K(a) = K(ζp). These extensions have different degrees over K, providing a
contradiction.

� If ζp ∈ K, which is to say n > 1, then K(ap
n−1

) = K(ζpn), since both extensions
have degree p over K. Since ζp ∈ K, Kummer theory tells us that degree p
cyclic extensions are in one-to-one correspondence with elements of K×/K×p.
In particular our extension is obtained adding p-th roots of elements in a single
coset of K×p, which means we can find u ∈ K× such that ap

n−1
= uζpn , which

implies the desired contradiction: ap
n−1

is trivial in Q.

For this type of field, the Galois group is “big ”enough to act transitively on path
components, hence the following result.

http://books.google.com/books?id=-2WR0fw9gLMC&pg=PA425&lpg=PA425
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Theorem 2.1.6. If F is countable and stably multiplicatively free, then XF is path
connected.

The proof is pretty involved, we thus start by giving a rough outline. The starting
observation is that, the field being countable, we can choose a filtration

V0 ⊆ V1 ⊆ V2 ⊆ . . .

of F̄×, where every Vn is a G-stable saturated subgroup such that (Vn)tf = Vn/µ∞
is a vector space over Q of finite rank.

Using the exponential extension 0→ Z→ Q→ µ∞ → 0 as an injective resolution
of Z, we get an inverse system of defining short exacts sequences

0 Hom(Vn+1,Q) Hom(Vn+1, µ∞) Ext1(Vn+1,Z) 0

0 Hom(Vn,Q) Hom(Vn, µ∞) Ext1(Vn,Z) 0.

Where the first two vertical maps come from the inclusion Vn ⊆ Vn+1 and are easily
seen to be surjective, while the dashed one exists by the universal property of the
cokernel and is surjective by the Snake Lemma. Taking the limit we get

0→ Hom(F̄×,Q)→ Hom(F̄×, µ∞)→ lim←−
n

Ext1(Vn,Z)→ 0,

which, since the limit functor is left exact and all transition maps between Exts are
surjective, is exact [18, Tag 02N1]. The short exact sequence we got is the defining
exact sequence of Ext1(F̄×,Z): the natural map

Ext1(F̄×,Z)→ lim←−n Ext1(Vn,Z)

is an isomorphism. Call Homexp(V, µ∞) the subset of Hom(V, µ∞) of characters that
restrict to the identity on roots of unity and Ext1

exp(V, µ∞) its image via the con-
necting morphism of the long exact sequence associated to the exponential extension.
The above isomorphism restricts to a bijection

Ext1
exp(F̄×,Z)→ lim←−n Ext1

exp(Vn,Z). (2.2)

Here the proof separates into two distinct natural steps. First, we are going to
solve the finitely generated case, by showing thatG acts transitively on Ext1

exp(Vn,Z).

Afterward, we will show how this implies that the whole G-action on Ext1
exp(F̄×,Z)

is transitive, by a limit argument that exploits (2.2).

Lemma 2.1.7. Let V ⊆ F̄× be a G-stable saturated subgroup such that Vtf is a finite
rank vector space. The induced G action on Ext1

exp(V,Z) is transitive.

https://stacks.math.columbia.edu/tag/02N1
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Proof. Fix a basis of Vtf and lift it to a finite subset B ⊂ F̄×. Let E = F (B) be
the finite extension of F generated by B, which, by hypothesis, is multiplicatively
free. Let Λ = V ∩ E×; this is a subgroup of V containing µ∞, and the quotient
Λtf = Λ/µ∞ is a full Z-lattice in Vtf. Notice that V is the saturation of Λ in F̄×.

The first step of this proof is arithmetic. We need to understand the G-action
on Hom(V, µ∞) and, in order to do so, we are going to describe explicitly the action
of the subgroup Gal(F̄ /E). Notice that E contains all roots of unity hence, by
Kummer theory [8, Chapter VI, Theorem 8.1], the extension E(V )/E we get adding
all elements of V is abelian, since we are adding roots of elements in E only. It is
then easy to check that the biadditive pairing

Gal(E(V )/E)× V/Λ→ µ∞, (σ, x) 7→ 〈σ, x〉 =
σ(x)

x
,

known as the Kummer pairing, is non-degenerate. In particular, this pairing induces
a duality isomorphism [8, Chapter I, Theorem 9.2]

κ : Gal(E(V )/E)→ Hom(V/Λ, µ∞), σ 7→ 〈σ,−〉.

This means that we can identify Gal(E(V )/E) with the subgroup Hom(V/Λ, µ∞) ⊆
Hom(V, µ∞), that is the subgroup of characters χ : V → µ∞ that are trivial on Λ.
Exploiting this isomorphism we can explicitly describe the natural Gal(E(V )/E)-
action on Hom(V, µ∞), that is the one induced by the natural G-action on V , which
can be restricted to the coset Homexp(V, µ∞) of characters which are the identity on
µ∞, because µ∞ ⊆ F ⊆ E. Since any character χ ∈ Homexp(V, µ∞) fixes roots of
unity, the Kummer map allows for a crucial simplification

χ(σ−1(α)) = χ

(
σ−1(α)

α

)
· χ(α) =

σ−1(α)

α
· χ(α),

thus

σ(χ) = κ(σ)−1 · χ.

That is, through our identification κ, the Galois action of Gal(E(V )/E) coin-
cides with the action of Hom(V/Λ, µ∞) on Homexp(V, µ∞) by multiplication (where
we intend everything is happening inside the ambient space Hom(V, µ∞)). In par-
ticular, for every character χ ∈ Homexp(V, µ∞), the subspace Hom(V/Λ, µ∞) · χ
of Homexp(V, µ∞) is a Gal(E(V )/E)-orbit. Or, to state this in ever simpler terms,
G permutes transitively the elements of every subspace of the form Hom(V/Λ, µ∞)·χ.

The second step of this proof requires some topological considerations. Consider
the following big commutative diagram, induced by 0 → µ∞ → V → Vtf → 0 and
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the exponential short exact sequence 0→ Z→ Q→ µ∞ → 0:

0 0 0

0 Hom(Vtf,Q) Hom(Vtf, µ∞) Ext1(Vtf,Z) 0

0 Hom(V,Q) Hom(V, µ∞) Ext1(V,Z) 0

0 Hom(µ∞, µ∞) Ext1(µ∞,Z) 0

0 0.

δ

Exactness and commutativity follow from the same arguments we used for the previ-
ous big diagram (2.1). Recall that Ext1

exp(V,Z) is the image via the quotient map δ
of Homexp(V, µ∞), on which we explicitly know the Gal(F̄ /E)-action. We are going
to prove that:

� The action is transitive on an open subspace of Y ⊆ Homexp(V, µ∞).
Consider the subgroup Hom(V/Λ, µ∞) ⊆ Hom(Vtf, µ∞). This is an open sub-
group. In order to see this, we write Vtf = Λtf ⊗Q to get the isomorphism

Hom(Vtf, µ∞) = Hom(Λtf,Hom(Q, µ∞))

ϕ 7→ [ϕ̃ : λ 7→ ϕ(λ · −)]

Notice this is an isomorphism of topological groups, where all Homs are in-
tended with the compact-open topology and both Λtf and Q are discrete, while
µ∞ has the euclidean topology. For any x ∈ Vtf there is an integer m such that
m · x ∈ Λtf ⊆ Vtf. The open subset of the left hand side space V1({x}, U) of
characters ϕ : Vtf → µ∞ such that ϕ(x) belongs to the open subset U ⊆ µ∞,
corresponds to the open subset of the right hand space V ({(m · x, 1/m)}, U)
of bilinear maps ϕ̃ : Λtf × Q → µ∞ such that ϕ̃(m · x, 1/m) belongs to U . A
compact discrete space is finite, hence the compact-open topology is generated
in both spaces by sets of this form, letting x and U vary, thus the claim.

We can think at Hom(Q, µ∞) as the subspace of the solenoid S = Hom(Q, S1)
of those characters Q→ S1 whose image is contained in ι : µ∞ ↪→ S1. This cor-
responds to the image of the subgroup Afin

Q of finite adeles in the solenoid S =
AQ/Q, by Lemma 1.1.6. Through this identification, the subset Hom(V/Λ, µ∞) ⊆
Hom(Vtf, µ∞) is the one corresponding to the inclusion

Ẑ = Hom(Q/Z, µ∞) ↪→ Hom(Q, µ∞) = Afin
Q .
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Therefore Hom(Λtf, Ẑ) is open in Hom(Λtf,Afin
Q ). Let χ ∈ Homexp(V, µ∞) and

Y the coset Hom(V/Λ, µ∞) · χ; this coset is open and, by the previous part of
the proof, the G action is transitive on Y .

� Every fiber of the projection Hom(V, µ∞)→ Ext1(V,Z) is a dense sub-
space of the domain. Since the first row tells us that fibers are cosets of
Hom(Vtf,Q), it is enough to prove this subgroup is dense in Hom(Vtf, µ∞).
Under the identification above and Lemma 1.1.6, this inclusion corresponds to
the map

Q = Hom(Q,Q) ↪→ Hom(Q,Q/Z) = Afin
Q ,

hence the claim follows from the strong approximation theorem [1, Chapter II,
15].

From these observations, the claim follows. Each fiber of the projection

δ : Homexp(V, µ∞)→ Ext1
exp(V,Z)

is dense, hence intersects the open subspace Y ⊆ Hom(V, µ∞). That is, every element
of the quotient Ext1

exp(V,Z) has a representative in Y . But we know any two such
representatives are conjugated by an element of G. Hence the G action is transitive
on the quotient, as claimed.

Let’s get back to the proof of our theorem. We need a limit argument to show
that G acts transitively on connected components. Notice that the exponential short
exact sequence 0→ Z→ Q→ µ∞ → 0 induces surjective maps

δ : Hom(Vn, µ∞)→ Ext1(Vn,Z)

for every integral n, all connected by surjective restriction morphisms. These induce
a surjective map lim←−n Hom(Vn, µ∞)→ lim←−n Ext1(Vn,Z).

Let ε1, ε2 ∈ Ext1
exp(F̄×,Z) be two path-components and consider their restriction

ε
(n)
1 , ε

(n)
2 ∈ Ext1

exp(Vn,Z).

We know, by the just proven Lemma 2.1.7, that their restrictions are conjugated by
G. We rigidify the situation in the following way: there exist characters

χ
(n)
1 , χ

(n)
2 ∈ Hom(Vn, µ∞)

in the same G-orbit, mapped by δ on the respective ε
(n)
i . We wish to show that we

can find a sequence of such χ
(n)
i compatible with the restriction maps!
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Lemma 2.1.8. There exist characters χ
(n+1)
1 , χ

(n+1)
2 ∈ Homexp(Vn+1, µ∞) in the

same G orbit such that both δ : χ
(n+1)
i 7→ εi and χ

(n+1)
i |Vn = χ

(n)
i .

Proof. All characters of the proposition live in the big commutative diagram

0 0 0

0 Hom(Vn+1/Vn,Q) Hom(Vn+1/Vn, µ∞) Ext1(Vn+1/Vn,Z) 0

0 Hom(Vn+1,Q) Hom(Vn+1, µ∞) Ext1(Vn+1,Z) 0

0 Hom(Vn,Q) Hom(Vn, µ∞) Ext1(Vn,Z) 0

0 0 0.

δ

δ

Since Hom(Vn+1/Vn, µ∞) ⊆ Hom(Vn+1, µ∞) is open, while Hom(Vn+1,Q) ⊆ Hom(Vn+1, µ∞)

is dense, so are their cosets. In particular, the fiber of χ
(n)
1 via the vertical map is

open, the fiber of ε1 via δ is dense, hence they intersect in an element we call χ
(n+1)
1 .

By construction, χ
(n+1)
1 has all the desired properties.

We choose an element σ ∈ G such that σ
(
χ

(n)
1

)
= χ

(n)
2 . Consider σ

(
χ

(n+1)
1

)
.

This character projects onto χ
(n)
2 , but might not be in the correct path component,

namely

ε2 − σ
(
χ

(n+1)
1

)
∈ Ext1(Vn+1,Z)

could not be zero. Although, by construction, this difference lives in the kernel of
the vertical restriction map, that is Ext1(Vn+1/Vn,Z). By diagram chasing, we find
an element α ∈ Hom(Vn+1/Vn, µ∞) ⊆ Hom(Vn+1, µ∞), such that

δ(α) = ε2 − σ
(
χ

(n+1)
1

)
.

We define χ
(n+1)
2 = σ

(
χ

(n+1)
1

)
+ α. By construction, we now have

χ
(n+1)
2 |n= σ

(
χ

(n+1)
1 |n

)
+ 0 = χ

(n)
1 ,

δ
(
χ

(n+1)
2

)
= σδ

(
χ

(n+1)
1

)
+ δ(α) = ε2.

From the discussion in the previous proof, we know there is a surjective homomor-
phism from an open subgroup H < G to

H → Hom(Vn+1/Λ, µ∞)→ Hom(Vn+1/Vn, µ∞);
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that is, there exists an element τ ∈ G such that κ(τ) = α. Then

τσ
(
χ

(n+1)
1

)
= σ

(
χ

(n+1)
1

)
+ κ(τ) = χ

(n+1)
2 .

This lemma allows us to build two sequences χ1, χ2 ∈ lim←−n Hom(Vn, µ∞) which
are mapped by the connecting morphism δ to the connected components ε1, ε2. We
built these characters such that the subsets

Tn = {σ ∈ G | σ
(
χ

(n)
1

)
= χ

(n)
2 }

are not empty. They are closed and contained in one another, forming a nested chain
of compact subspaces of G. In particular, their intersection is non-empty too. That
is what we wanted, since an element

σ ∈
⋂
n

Tn

by definition sends χ1 7→ χ2, hence ε1 7→ ε2.

2.2 Cohomology groups

We proceed in the task of computing topological invariants of the space XF . Since
our space is horrendous, or -to be fair- just pathological, singular cohomology is
not an interesting enough set of invariants. For example, let’s consider the case of
the solenoid: its cohomology groups are direct sums of the cohomology of its path-
components, which are homeomorphic to R, hence trivial. In the same way, singular
cohomology misses the information about XF we would like to retrieve. We are going
to compute its sheaf cohomology instead, which has the nice property of behaving
nicely under limits.

Proposition 2.2.1 ([2, Chapter X, Theorem 2.1]). Let (Xn)n be a cofiltered projec-
tive system of compact Hausdorff topological spaces, let A an abelian group and the
corresponding constant sheaf over the Xn. We then have a canonical isomorphism

Hp
(

lim←−nXn, A
)

= lim−→n
Hp (Xn, A)

in sheaf cohomology.

This gives us a way to compute the cohomology of XF̄ for some selected abelian
groups A. Afterwards we’ll handle the descent to XF .
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� A is a torsion abelian group. Since A can be expressed as a combination of
filtered colimits of finite groups and this operation commutes with sheaf coho-
mology over compact Hausdorff spaces [18, Tag 01FF], it’s enough to compute
the case A = Z/nZ. As usual, when we need to understand geometric prop-
erties we pass to the homeomorphic coset Hom(F̄×tf , S

1). Let’s write F̄×tf as a
colimit over the filtered system of its finitely generated free subgroups lim−→V
and apply Proposition 2.2.1 we get: Hp(XF̄ , A) = lim−→Hp(V ∨, A). In this direct

system we find, for every V , an arrow induced by the inclusion V → 1
nV , which

corresponds to a map ( 1
nV )∨ → V ∨ between the duals, which happen to be tori

of the same dimension. We understand the map induced in cohomology since
on such well-behaved spaces we have a canonical isomorphism between sheaf
and singular cohomology! And we know the latter from [9, Corollary 1.3.2.],
for example. In particular,

Hp(V ∨,Z) =

p∧
Hom(V,Z);

that is, all cohomology groups are free and the cohomology algebra H•(V ∨,Z)
is generated in degree 1 by x1, . . . , xk, where k is the rank of V . In particular,
the map induced by V → 1

nV corresponds to xi 7→ n·xi. Applying the universal
coefficient theorem we get

H•(V ∨,Z/nZ) = Z/nZ⊗H•(V ∨,Z)

is generated in degree 1 by the same k generators, and our map kills everything
in degree p > 0. We conclude that

H0(XF̄ , A) = A, Hp(XF̄ , A) = 0 for all p > 0.

� A = Q, rational coefficients. This is a straightforward application of the
universal coefficient theorem to the well-known cohomology algebra of the n-
torus:

Hp(V ∨,Q) = Hp(V ∨,Z)⊗Q =

p∧
Z

H1(V ∨,Z)⊗Q =

p∧
Z
V ⊗Q.

Since exterior product commutes with our colimit and F̄×tf is a Q-vector space,
we get

Hp(XF̄ ,Q) =

p∧
Q
F̄×tf for all p.

https://stacks.math.columbia.edu/tag/01FF
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� A = Z, integral coefficients. To compute these groups we have two possible
approaches. One, is applying the same argument; that is, we know the coho-
mology of tori and the exterior product commute with the direct limit, and
that gives directly

lim−→Hp(V ∨,Z) = lim−→

p∧
Z

H1(V ∨,Z) =

p∧
Z

lim−→V =

p∧
Q
F̄×tf .

Another approach is possible: from the short exact sequence 0 → Z → Q →
Q/Z → 0 we get a long one of which all groups except the one with integral
coefficient we already computed! It starts with

0→ H0(XF̄ ,Z)→ Q→ Q/Z→ H1(XF̄ ,Z)→ F̄×tf → 0

and then continues with isomorphism between the groups with integral and
rational coefficients, since all others are 0, Q/Z being a torsion group. The
map Q→ Q/Z in the above long sequence is surjective, hence the isomorphism
in degree 1. To sum up

H0(XF̄ ,Z) = Z, Hp(XF̄ ,Z) = Hp(XF̄ ,Q) =

p∧
Q
F̄×tf for all p > 0.

We now handle the descent to XF . Let’s put ourselves in the very general setting
of a compact Hausdorff space X, a profinite group G operating continuously and
freely on X and the quotient space Y = G\X. Any G-equivariant sheaf on G can be
pushed through the quotient map to a sheaf on Y . Connecting the cohomologies of
this spaces there is a spectral sequence, the so called Cartan-Leray spectral sequence
(look at [13, p. 337])

Ep,q2 = Hp(G,Hq(X,A))⇒ Hp+q(Y,A),

where Hp(G, •) denotes continuous group cohomology, and Hq(X,A) and Hp+q(X,A)
denote sheaf cohomology. Letting X = XF̄ , G our absolute Galois group and Y =
XF we retrieve

Ep,q2 = Hp(G,Hq(XF̄ , A))⇒ Hp+q(XF , A).

This allows us to compute the cohomology groups of XF :

� A is a torsion abelian group. Let’s take a look at the second page of the
Cartan-Leray spectral sequence:

Ep,q2 = Hp(G,Hq(XF̄ , A)).
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From our previous work, we know this to be zero for q > 0. Thus the sequence
collapses at the second page leaving us on the first row the groups we were
looking for

Hp(XF , A) = Hp(G,A). (2.3)

� A = Q, rational coefficients. All the cohomology groups Hq(XF̄ ,Q) are
Q-vector spaces, hence have trivial Galois cohomology, so that the spectral
sequence collapses again at the second page and we obtain isomorphisms

Hq(XF ,Q) = H0(G,
∧q

Q F̄
×
tf ) =

(∧q
Q F̄

×
tf

)G
. (2.4)

� A = Z, integral coefficients. In this case, the cohomology groups do not
have any easy presentation, all we can say is what we can derive from the long
exact sequence derived from 0 → Z → Q → Q/Z → 0. Since the last map
in degree zero in surjective, the first connecting homomorphism is zero and in
this sequence we find

0→ H1(XF ,Z)→
(
F̄×tf
)G → H1(G,Q/Z)→ . . .

A bit more can be said about cohomology groups with integral coefficients, but
to do so, one has to enter the realm of K-theory. To be fair, we are only going to
need one theorem. We refer to [4] for an introduction to the subject, while we collect
the main facts we are going to use.

Let’s recall that the n-th Milnor group KM
n (F ) is defined as the the quotient of

the tensor product (F×)⊗n by the ideal generated by a1⊗· · ·⊗an, where ai+aj = 1.
From the definition follows elementary that a1 ⊗ · · · ⊗ an is zero in KM

n (F ) when
two of the factors ai, aj are equal; that is, the group could be defined as well as a
quotient of the exterior product of n-copies of F×. From Kummer Theory, we have
a map

∂m : F× → Hom(G,µm),

induced in cohomology by multiplication by m in F̄×. The map

∂nm : (F×)⊗n → Hn(G,µm)⊗n → H1(G,µ⊗nm ),

which we get by tensoring ∂ with itself n times, then composing with the cup product,
factors through the n-th Milnor group. That is, it defines a map known as the Galois
symbol

∂nm : KM
n (F )→ Hn(G,µ⊗nm ).
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The norm residue isomorphism theorem of Voevodsky [4, Theorem 4.6.5], also known
as the Bloch-Kato conjecture, states that for any field F , for every integer n ≥ 0 and
any integer m that is prime to characteristic of F , the map

∂nm : KM
n (F )⊗ Z/mZ→ Hn(G,µ⊗nm )

is an isomorphism. Notice that, under our assumption that µm ⊆ F , the G action
on µm is trivial, thus the last group is simply the cohomology with coefficients in
µ⊗nm = µm = Z/mZ.

Proposition 2.2.2. The homomorphisms Hp(XF ,Q) → Hp(XF ,Q/Z), induced by
Q→ Q/Z, are all surjective.

Proof. Consider the following commutative diagram

(
∧p F× ⊗Q) KM

p (F )⊗Q/Z

Hp(XF ,Q) Hp(XF ,Q/Z).

∂

The bottom arrow is induced by the projection Q→ Q/Z. The right one is obtained
by taking a colimit over the isomorphisms ∂pm of the Bloch-Kato conjecture and is

therefore an isomorphism. The left map is the inclusion (
∧p F× ⊗Q) →

(∧
F̄×
)G

.
The uppermost map is induced by the projection∧p F× → KM

p (F )

which defines the Milnor group. To sum up: following the diagram on the right yields
a surjective morphism, hence the other side has to yield a surjective morphism as
well and we can conclude that Hp(XF ,Q)→ Hp(XF ,Q/Z) has to be surjective.

This is an interesting result, as we can now say a lot more about cohomology
with integral coefficients! We know now that in the long exact sequence associated to
0→ Z→ Q→ Q/Z→ 0 all connecting homomorphisms have to be zero. Therefore
we have, in every degree p ≥ 0, an exact sequence

0→ Hp(XF ,Z)→ Hp(XF ,Q)→ Hp(XF ,Q/Z)→ 0.

Theorem 2.2.3. The group Hp(XF ,Z) is torsion free, for every p ≥ 0.
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2.3 On the hypothesis

It is time to face our burden: since here, we assumed that Q(µ∞) ⊆ F , which is
quite an unpleasant assumption. For instance, we cannot take F to be a number
field, or Q itself, which are obviously of primary interest. The unfortunate truth is
that the construction of XF lies on several small but crucial details, thus stretching
a hypothesis usually disrupts the delicate balance on which our theorems rely. We
propose a slight generalization and show why the main theorem collapses.

Let F be a characteristic 0 field (not necessarly containing all roots of unity µ∞),
let F̄ /F be an algebraic closure and let G = Gal(F̄ /F ) be the corresponding Galois
group. Let’s give F̄× the discrete topology and focus on the subset

ZF̄ = {χ ∈ Hom(F̄×, S1) | χ is injective when restricted to µ∞} ⊆ Hom(F̄×, S1).

This is quite a larger subspace then XF̄ . As a subspace of the Pontryagin dual
(F̄×)∨ = Hom(F̄×, S1), our set ZF̄ inherits a topology and a natural continuous left
action of G given by σ(χ) = χ ◦ σ−1. Notice that the G-action now could modify
χ|µ∞ but our new definition allows for it. This space shares almost all nice properties
of XF̄ .

From the omnipresent short exact sequence 0→ µ∞ → F̄× → F̄×tf → 0 we get a
short exact sequence of topological groups

0→ Hom(F̄×tf , S
1)→ Hom(F̄×, S1)→ Hom(µ∞, S1)→ 0.

Notice that the first space, being isomorphic to XF̄ , is connected, while the last one
is totally disconnected. Hence the cosets of XF̄ in ZF̄ are precisely the connected
components.

Theorem 2.3.1. The topological space ZF̄ is non-empty, Hausdorff and compact.

Proof. Clearly ZF̄ contains XF̄ and is therefore non-empty. Also, it is contained in
the dual (F̄×)∨, which is T2, hence inherits this property. At last, we show that
ZF̄ is a closed subspace of Hom(F̄×, S1), which, being the dual of a discrete group,
is compact [5, Theorem 23.17]. Take the compact set µn ⊆ F̄× and the open set
Un ⊆ S1 obtained by carving out small closed segments around the primitive n-th
roots of unity. The closed set complementary to V (µn, Un) (the open set of those
maps sending µn in Un) is then the set of characters which sends at least an n-th
root of unity to a primitive one and that are therefore injective when restricted to
µn. We then have that

ZF̄ =
⋂

n∈N>1

V (µn, Un){

is closed.
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Alas, ZF̄ is not connected. From the aforementioned decomposition we get that
Hom(F̄×/µ∞, S1) is the connected component of Hom(F̄×, S1) containing the iden-
tity. Its cosets

XF̄ (ι) = {χ ∈ Hom(F̄×, S1) | χ|µ∞ = ι : µ∞ → S1}

are the (homeomorphic) connected components. Hence, as ZF̄ is (as a set) the dis-
joint union of XF̄ (ι) as ι varies through injective homomorphisms µ∞ → S1, it must
have infinite connected components all homeomorphic to Hom(F̄×/µ∞, S1). These
connected components are not open, since we have an infinite number of them and
ZF̄ is compact.

The G-action is still proper and free. It’s free by Lemma 1.2.4, which did not
require any assumption about F containing roots of unity. We need to show that
the map G × ZF̄ → ZF̄ × ZF̄ is proper but, once again, this follows trivially from
compactness. We can thus define ZF = G\ZF̄ and happily conclude that being
the quotient of a compact Hausdorff space by proper free action, it must be a com-
pact Hausdorff space itself. Also, a finite extension E/F induces a covering map
ZE → ZF . This construction is far from being what we were looking for, as nor the
base, nor the covering space has to be connected. Nonetheless, we can study how
G acts by permutation on the connected components of ZF̄ and identify those fields
for which ZF is connected!

We saw that the connected components of ZF̄ are in one-to-one correspondence
with the set of injective homomorphisms µ∞ → S1. The image of these group
homomorphisms must be composed entirely of torsion points, hence be contained
in µ∞ ⊆ S1. Being injective, they are exactly the automorphisms Aut(µ∞); as a
subgroup of (µ∞)∨, Aut(µ∞) inherits the compact open topology (from a discrete
copy of µ∞ to a copy with the euclidean topology it gets as a subspace of C). There
is a (canonical) isomorphism of topological groups

Aut(µ∞)→ Gal(Q(µ∞)/Q).

The group G acts on Aut(µ∞) by composition: σ(ι) = ι ◦ σ−1. We are only
interested on σ|µ∞ , therefore the action factors through the quotient

G = Gal(F̄ /F )→ Gal(F (µ∞)/F ) ' Gal(Q(µ∞)/Q(µ∞) ∩ F ).

Thus the action on connected components is easly described as the action of the
subgroup Gal(Q(µ∞)/Q(µ∞) ∩ F ) on the group Gal(Q(µ∞)/Q) by multiplication
(by the inverse, on the right).
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In order to get a connect space, as the quotient by G-action, let’s restrict from
ZF̄ to a G-orbit of a single connected component, say XF̄ . Let YF̄ be this space.
Notice that, by construction, YF̄ is invariant for the G-action, which is proper, free
and permutes transitively all connected components.

Theorem 2.3.2. The quotient space YF = G\XF̄ is non-empty, Hausdorff and
connected. Alas, we have a non-canonical homeomorphism

YF → XF (µ∞).

Proof. The first part of the statement follows, in a way that cannot be mysterious
to us anymore, from the geometric properties of ZF̄ we discovered in the previous
proposition and the educated behavior of the G-action. For the second part, notice
that the stabilizer of each connected component is isomorphic to the open subgroup
Gal(F̄ /F (µ∞)) of G, hence an homeomorphism

YF = G\YF̄ → Gal(F̄ /F (µ∞))\XF̄ = XF (µ∞).

We thus have a non-canonical homeomorphism

ZF ' XF (µ∞) ×Gal(Q(µ∞) ∩ F/Q).

This theorem tells us, sadly, that when we restrict our attention to connected spaces,
we fall back in the case considered to the original article.



CHAPTER 3
Algebraic Properties

In this last chapter, we are going to discuss a construction in algebraic geometry
analogous to that of XF . The structure of this chapter is going to closely resemble
that of chapter 1. The first section exploits the algebraic nature of XF , showing this
space can be retrieved as the set of rational points of a connected complex scheme XF .
We then concentrate on the complex scheme XF̄ , studying its geometrical properties
and showing it has no non-trivial finite étale covering space, exactly as we did for
XF̄ . The last section focuses on the G-action on XF̄ , studying its properties in order
to classify the finite étale covering spaces of the quotient XF .

3.1 Is XF an algebraic variety?

Our definition of XF̄ as a Pontryagin dual has an algebraic aspect we did not fully
explore: it is natural to wonder if this topological space has some type of algebraic
structure we were neglecting. For example, we could ask ourselves if XF̄ is a com-
plex variety! This cannot be the case. In the first place, because this thesis would
have started very differently, and, on a more serious note, because we expect XF̄ to
be infinite-dimensional. Nevertheless, there is an interesting algebraic structure to
discuss: that of an (infinite-dimensional) complex scheme.

Identify S1 with the complex unit circle and let ι : µ∞ → S1 ⊆ C× the embedding
we fixed in the first chapter. Consider its C-linear extension C[ι] : C[µ∞] → C and
the product

AF̄ = C[F̄×]⊗C[µ∞] C.
Call XF̄ = SpecAF̄ the corresponding affine scheme. Next proposition will explain
the choice of this unusual ring, clarifying its connection with XF . Notice that the

45
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absolute Galois group G acts on AF̄ , via its natural action on the first component.

Notice XF̄ is a complex scheme and consider its rational points XF̄ (C). Equip
this set with the complex topology, in order to obtain a topological space XF̄ (C)top.

For sake of precision, let’s define the complex topology on the rational points of
the spectrum X = SpecA of a C-algebra A (following [17]). Notice X (C) can be
identified with the set of C-algebra homomorphisms A → C: we can interpret an
element f ∈ A as a function f : X (C) → C by sending x : A → C to x(f); we’ll by
writing f(x) for what formally is x(f). This way we can define for every f ∈ A a
subset Uf ⊆ X (C) by

Uf = {x ∈ X (C) | |f(x)| < 1}.

Definition 3.1.1. The complex topology on X (C) is the topology whose base is the
family of finite intersections

Uf1,...,fr = Uf1 ∩ · · · ∩ Ufr .

Notice that, by means of affinities on elements fi (that is, multiplications by
scalars or translations by constants), we get a lot of easily described open sets: those
consisting of geometric points sending a finite number of fi not necessarily in the
open unit disc, but in any open disc of the complex plane, and thus in any open
subspace V ⊆ C. That is, all sets of the form

UV,f = {x ∈ X (C) | f(x) ⊆ V } ⊆ X (C).

are open in complex topology.

When we put the complex topology on XF̄ (C), we get a topological space that
deformation retracts onto XF̄ .

Proposition 3.1.2. There is a canonical G-equivariant homeomorphism

XF̄ (C)top → XF̄ ×Hom(F̄×,R).

Proof. This comes directly from our definitions: the space on the left hand side is

XF̄ (C) = HomC(C[F̄×]⊗C[µ∞] C,C).

Every map into the fiber product XF̄ (C) can be thought as couple of maps f : C[F̄×]→
C, g : C → C of C-algebras, agreeing on roots of unity. The first map restricts to
a group homomorphism χf : F̄× → C×, while the latter is fixed to be the identity.
That is, we have a canonical bijection

XF̄ (C)→ {χ ∈ Hom(F̄×,C×) | χ|µ∞ = ι}.
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When we consider the compact-open topology on the latter subspace of Hom(F̄×,C)
and the complex topology on XF̄ (C), this map becomes a homeomorphism. The key
observation is that in both cases open sets are exactly the set of maps that send a
finite number of points to an open subspace of C. For example, to see that the above
bijection is continuous, consider an open set V (K,U) of the base, where K ⊆ F̄× is
compact, hence a finite set with elements α1, . . . , αr ∈ F×, and U ⊆ C× is an open
subset. The finitely many elements of K correspond to elements α1, . . . , αr ∈ AF̄ ,
hence the pre-image of V (K,U) in XF̄ (C) is an open set; having all its elements to
send α1, . . . , αr to the open subset U ⊆ C. One can see that the bijection is open
with an analogous argument.

Since C× = R× S1 as topological groups, we get the homeomorphism

{χ ∈ Hom(F̄×,C×) | χ|µ∞ = ι} → {χ : F̄× → S1 | χ|µ∞ = ι} ×Hom(F̄×,R).

χ 7→
(
χ

|χ|
, |χ|

)
.

Notice that the first factor is XF̄ by definition, hence the claim. Furthermore,
the second factor is contractible.

The choice of the ring AF̄ now does not look arbitrary anymore: the rational
points of C[F̄×] correspond to group homomorphisms F̄× → C× and, exactly as we
did in our topological construction, we selected the component on which they agree
with ι, by taking the fiber product. We can now consider the subring of G-invariants

(AF̄ )G = C[F̄×]G ⊗C[µ∞] C,

we call this ring AF and its spectrum XF = SpecAF . Notice that the scheme XF
might not be the quotient of XF̄ by the G-action, because G is not necessarily finite.
For the moment we content ourselves with proving that it is true for their rational
points.

Proposition 3.1.3. Let A be a C-algebra and let G be a profinite group acting
continuously on A. Let π : X = SpecA→ SpecAG = Y be the morphism associated
to the inclusion AG ⊆ A. Then the induced map on rational points

X (C)/G→ Y(C)

is bijective.

Proof. It is well known [10, Section 2.3.4, ex 3.21] that if G is finite, then X/G→ Y
is an isomorphism and X → Y the topological quotient by G. Since C is algebraically
closed, rational points are the closed points, hence the claim. We can thus assume
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that G is not finite.

The inclusion AG ⊆ A is integral: since the G-action is continuous, every element
x ∈ A has finite orbit {x1, . . . , xr} and is solution to the monic polynomial

r∏
i=1

(t− xi) ∈ AG[t].

Thus π is surjective and we only need to prove injectivity.

Let’s write A as the filtered colimit of its subrings AH , where H < G runs through
open subgroups. Let YH = Spec(AH), so that

X (C) = lim←−
H<G

YH(C).

By the case of G finite, we know that YH(C)/(G/H) = Y(C). Therefore, if x, y ∈
X (C) map to the same element of Y(C), then their images in YH(C) lie in the same
G/H-orbit, in particular in the same G-orbit. For each H, we get a nonempty subset
TH ⊆ G of elements which carry the image of x in YH(C) to the image of y in YH(k),
which is open and therefore closed, because it is union of a finite number of cosets
of H. The TH form a cofiltered system of compact spaces, thus their intersection is
non-empty; in this intersection lives an element of G carrying x to y.

This allows us to carry the algebraic structure from XF̄ to XF :

Theorem 3.1.4. There is a deformation retraction

XF (C)top → XF .

Proof. From Theorem 3.1.2 we have a G-equivariant homeomorphism

XF̄ (C)top → XF̄ ×Hom(F̄×,R)

Consider the following deformation retract

H : XF̄ ×Hom(F̄×,R)× [0, 1]→ XF̄ ×Hom(F̄×,R)

(χ, λ, t) 7→ (χ, tλ)

The deformation retract being G-equivariant, it descends to quotients. That is, the
quotient G\XF̄ (C)top = XF (C)top (from the just-proven Proposition 3.1.3) deforma-
tion retracts onto G\XF̄ = XF .

This exceeded our hopes, giving us an algebraic structure on all our spaces XF

and their connected coverings.
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3.2 Étale covers

The previous section suggests a completely different approach to our main question,
a purely algebraic one. The first step is to reformulate the question. In order to do
so, we need to understand that in the realm of algebraic geometry it has been devel-
oped a Galois theory, that is not only very similar to the theories of fields extensions
and covering spaces, which we recalled at the beginning of the first chapter, but
encompasses both under its wide generality. We are going to refer to [19, Chapter
5] for details and present the main concepts only.

Let’s start by fixing a connected scheme X , which is going to be our base space,
and define what a covering map Y → X is.

Definition 3.2.1. A finite étale morphism f : Y → X is a morphism such that

1. direct image sheaf f∗OY is locally free of finite rank,

2. each fibre Yp of f is the spectrum of a finite étale κ(p)-algebra.

A finite étale covering map is a surjective finite étale morphism.

As expected, a morphism of finite étale covers between Y1,Y2 → X is a scheme
morphism Y1 → Y2 making the obvious diagram commute; if both Y1,Y2 are con-
nected, any such morphism is a finite étale cover itself. In particular, we can talk
about the automorphism group Aut(Y|X ) of a connected cover Y → X and consider
the quotient

Y/Aut(Y|X )→ X .

If this map is an isomorphism, then Y is said to be a Galois cover. The theory of finite
étale covers develops in complete analogy with the two theories already presented.

Let Y → X be a Galois cover. The group Aut(Y|X ) determines all intermediate
finite connected covers Y → Z → X . That is, given said tower, Y → Z is a Galois
cover whose group Aut(Y|Z) is naturally identified with a subgroup H < Aut(Y|X );
in this case, the quotient cover Y/H → X is isomorphic to Z → X . Vice versa,
every subgroup H < Aut(Y|X ) determines an intermediate cover Y → X , whose
corresponding subgroup of Aut(Y|X ) is H itself.

Fix a geometric point x̄ of X and consider the functor

Fibx̄ : FinÉtCov /X → FinSet

sending a finite étale cover Y → X to its geometric fiber over x̄, which is a finite
set. The group πét

1 (X , x̄) = Aut(Fibx̄) is called the étale fundamental group of
the scheme X at x̄. If we fix a Galois cover Y → X and restrict the fiber functor
to the full subcategory of finite covers of X that are quotients of Y, we obtain a
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finite group Aut(FibYx ) = Aut(Y|X ). The inverse system of Galois covers gives an
inverse system of the corresponding automorphisms group, whose limit coincide, as
an abstract group, with the étale fundamental group:

πét
1 (X , x̄) = Aut (Fibx̄) = lim←−Y Aut(FibYx̄ ) = lim←−Y Aut(Y|X ).

This gives the fundamental group a profinite structure.

Theorem 3.2.2 ([19, Theorem 4.5.2]). Fixed a geometric point x̄→ X , there is an
equivalence

Fibx̄ : FinÉtCov /X → πét
1 (X , x̄)- FinSet

between the category of finite étale cover over X to the category of finite sets equipped
with a continuous πét

1 (X , x̄)-action.

Consider the scheme X = SpecF . Its finite étale covers correspond exactly to
the finite étale algebras over F ; i.e. the functor Spec is an anti-equivalence be-
tween the category FinÉtAlg /F and FinÉtCov / Spec(F ). Nonetheless, it is not
hard to find a natural question as interesting as the one we posed in the first chapter.

Question. Given a field F , can we find a connected scheme XF , defined over
an algebraically closed field, whose finite covers are in correspondence with finite
extensions of our base field F? That is, a space that comes equipped with an
equivalence

FinÉtCov /SpecF → FinÉtCov /XF ?

We already have a good candidate: the complex scheme

XF = SpecAF

we defined in the previous section. We are now going to prove this is the case,
following the same steps we took in the first chapter of this thesis: the first step is to
understand the geometry of XF̄ . In perfect analogy with the topological construction,
our scheme XF̄ is a connected component of the larger scheme SpecC[F̄×].

Proposition 3.2.3. There is an isomorphism

XF̄ ' SpecC[F̄×tf ].

In particular, XF̄ is a connected scheme.

Proof. For any abelian group M the group algebra C[M ] is a Hopf algebra: the
comultiplication C[M ] → C[M ] ⊗C C[M ] is determined by m 7→ m ⊗ m for all
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m ∈M , and the other structure maps are even more obvious. This turns SpecC[M ]
into an affine commutative group scheme over C. Consider the exact sequence

0→ µ∞ → F̄× → F̄×tf → 0, (3.1)

and the corresponding group algebras. There is a natural way to think at C[µ∞] as
a sub-algebra of C[F̄×]. Since the ring homomorphism C[µ∞] ↪→ C[F̄×] is injective,
the corresponding group homomorphism SpecC[F̄×] → SpecC[µ∞] is a quotient
map [14, Theorem 5.43]. We can explicitly compute the kernel of this group scheme
homomorphism, following [14, Chapter 1, Section e]: let C[µ∞] → C be the map
corresponding to the identity of the Hopf algebra, the one sending m 7→ 1 for all
m ∈ µ∞. Its kernel is the augmentation ideal I = (1−m | m ∈ µ∞) ⊆ C[µ∞], thus
the group we are looking for is the spectrum of the complex algebra

C[F̄×]/IC[F̄×] = C[F̄×]/(1−m | m ∈ µ∞) = C[F̄×/µ∞] = C[F̄×tf ].

To sum up, the functor SpecC[−] applied to (3.1) spits out the short exact sequence
of affine (abelian) group schemes

0→ SpecC[F̄×tf ]→ SpecC[F̄×]→ SpecC[µ∞]→ 0, (3.2)

which we are going to prove is the short exact sequences of connected components:
that is, the first scheme is the connected component of the identity, while the last is
the totally disconnected quotient.

The first scheme SpecC[F̄×tf ] is connected, essentially because F̄×tf is torsion-free:
write F̄×tf = lim−→n

Mn as a direct limit over finite rank free Z modules Mn ' Zn, so
that

SpecC[F̄×tf ] = lim←−n SpecC[Zn] = lim←−n (Gm)n. (3.3)

An affine scheme is connected if and only if the corresponding ring cannot be written
as a product or, equivalently, if and only if the ring has no non-trivial idempotent.
That is the case: let x ∈ C[F̄×tf ] be an idempotent and n an integer such that
x ∈ C[Mn]. Since C[Mn] ' C[Zn] ' Gn

m is connected, then x must be trivial and
SpecC[F̄×tf ] has to be connected as well.

On the other side of the short exact sequence (3.2), the topological space under-
lying SpecC[µ∞] is totally disconnected: to see that, write µ∞ = lim−→n

µn and

SpecC[µ∞] = lim←−n SpecC[µn] = lim←−n Spec C[t]
(tn−1) .

The n-th object in the inverse system is the constant group scheme over C corre-
sponding to µn = Z/nZ, where transition maps are the obvious projections.
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Getting back to the sequence (3.2), we find out that SpecC[F̄×tf ] is the connected
component of the identity of the group scheme SpecC[F̄×]. Therefore, its cosets are
precisely the connected components and the base change in the construction

XF̄ SpecC[F̄×]

SpecC SpecC[µ∞],

induced by ι : µ∞ → C×, selects the connected component we are interested in.
Finally, there is a non canonical isomorphism between every two connected compo-
nents, in particular the one we were seeking.

For all properties that do not involve theG-action, we can consider the isomorphic
connected component of the identity SpecC[F̄×tf ]. We are particularly interested in
étale coverings.

Theorem 3.2.4. XF̄ has no non-trivial finite étale covering space.

Proof. Once again, we switch to the isomorphic SpecC[F̄×tf ] and consider it as
the limit of complex algebraic tori in (3.3). Recall that a finite étale cover of
SpecC[Mn] = SpecC[Zn] = Gn

m is a torus of the same dimension and the cover-
ing map is a homomorphism of tori [15, Proposition 1]: in particular, there is a free
module M ' Zn such that the finite étale cover is induced by an injective homomor-
phism Mn →M .

Let Y → SpecC[F̄×tf ] be a finite étale covering. Then Y must be affine, say
Y = SpecB for some finite étale ring homomorphism C[F̄×tf ] → B. By [18, Tag
00U2, item (9)], Y must be the base change of some finite étale cover over some
space in the limit (3.3): i.e. we have a finite étale ring homomorphism C[Mn]→ B′,
for a finitely generated subgroup Zn 'Mn ⊆ F̄×tf fitting in a pull-back diagram

Y = SpecB SpecB′

SpecC[F̄×tf ] SpecC[Mn].

Notice that this very step was covered in the topological construction by the com-
pactness argument. Since B is finite over C[F̄×tf ] so must B′ be over C[Mn], hence
SpecB′ → SpecC[Mn] ' Gn must be a finite étale covering, therefore induced by an
injective homomorphism Mn →M between free Z-modules of the same rank n. We
can pass to the dual diagram and compute

B = C[F̄×tf ]⊗C[Mn] C[M ] = C
[
F̄×tf ⊗Mn M

]

https://stacks.math.columbia.edu/tag/00U2
https://stacks.math.columbia.edu/tag/00U2
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Consider the short exact sequence 0 → Mn → M → Q → 0, taking the tensor
product with the (flat) Q-vector space F̄×tf kills the torsion quotient and yields an
isomorphism

F̄×tf = F̄×tf ⊗Mn Mn → F̄×tf ⊗Mn M.

Therefore B = C[F̄×tf ] and Y is a trivial cover.

3.3 Galois correspondence

We find ourselves in a position we are now familiar with: we have a nice space XF̄
with all desirable geometric properties and no covers, on which our absolute Galois
group G is acting continuously. We wish to take quotients. That is, for a finite
extension E/F , we have inclusions AGal(F̄ /F ) ⊆ AGal(F̄ /E) ⊆ A. Those induce a map

XE → XF .

We wish to show this map is a finite étale covering map. In the topological analogue,
this came from the G-action being free. Here, the situation is similar.

Proposition 3.3.1. Let k be any algebraically closed field. The G-action induced
on geometric points XF̄ (k) is free.

Proof. By definition

XF̄ (k) = Hom(C[F̄×]⊗C[µ∞] C, k),

the fiber product can be identified with the set of pairs (χ, g), where χ : F× → k× is a
group homomorphism and g : C→ k is a field embedding, such that χ and g agree on
all roots of unity (notice that if k is not an extension of C the set XF̄ (k) is empty and
the statement is vacuously true). The Galois action is given by σ(χ, g) = (σ(χ), g).
The χ occurring are all injective on µ∞ and therefore the desired result follows from
the same number theory Lemma 1.2.4 we used in the topological case.

The G action is free on geometric points. We are going to show this is exactly
what we need for the quotient map to be finite étale.

Proposition 3.3.2. Let E/F a finite extension, then XE → XF is a finite étale
cover.

The proof is quite technical. It relies on the following characterization of finite
étale morphisms, stating that this property can be checked on geometric points.
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Proposition 3.3.3. Let A be a C-algebra and G be a finite group of C-algebra
automorphisms of A. Let

π : X = SpecA→ Y = SpecAG

the morphism induced by the inclusion AG ⊆ A.
If for every algebraically closed field k the G-action is free on geometric points

X (k), then π is a finite étale covering.

Proof. As already mentioned, the projection π is the universal G-invariant scheme
morphism from X and it is the topological quotient map X → X/G = Y by the
group action [10, Section 2.3.4, ex 3.21]. We are going to prove that, under our
assumptions, it is finite and étale as well.

Let GC = SpecC[G] be the constant group scheme associated to our group G,
where C[G] is the commutative ring

∏
g∈GC with trivial product between different

components. Consider the G-action map

G×C X → X , (g, x) 7→ gx

and let µ : A → A[G] be the corresponding ring homomorphism. Consider also the
trivial projection GC ×C X → X given by the inclusion

δ : A ↪→ A[G] = A⊗C C[G], a 7→ a⊗ 1.

Finally, consider the product of the just defined maps

R : GC ×C X → X ×C X corresponding to δ ⊗ µ : A⊗C A→ A[G] (3.4)

(g, x) 7→ (x, gx).

The proof relies on the following two lemmas.

Lemma 3.3.4. The product map R is a closed immersion.

Proof. Since R is finite, because both components are, the claim follows once we
prove that R is a monomorphism [18, Tag 03BB]. We check this directly: take a
complex scheme Z and two maps

Z GC ×C X X ×C X .
(aX ,aG)

(bX ,bG)

R

whose compositions coincide. Taking composition with the trivial projection, we
get aX = bX . Then we only need to check that aG = bG. Notice that both these
maps have to be constant on connected components since the target scheme is totally

https://stacks.math.columbia.edu/tag/03BB


3.3. GALOIS CORRESPONDENCE 55

disconnected, hence we can check if they agree on geometric points Z(k). The G
action being free on X (k) means that the map R(k) : X (k)×G(k)→ X (k)×X (k) is
injective: (x, gx) = (y, hy) only if x = y and gx = hx, which implies g = h because
the action is free. In particular R(k) is a monomorphism of sets, hence aG and bG
have to agree on geometric points, thus as scheme morphisms as well.

We are interested in the coequalizer of the pair of morphisms considered so far

GC ×C X ⇒ X , corresponding to the equalizer of µ, δ : A⇒ A[G].

This is the universal G-invariant morphism π : X → Y induced by AG ⊆ A. Notice
that, because of this universal property, relation (3.4) factors through a morphism

GC ×C X → X ×Y X (3.5)

This is a closed immersion, since the composition with X ×Y X → X ×C X is the
closed immersion R: the dual statement on surjectivity of the corresponding ring
homomorphisms is clear.

Lemma 3.3.5. The map (3.5) is an isomorphism and A is a locally free AG-module
of constant rank n, where n is the order of G.

Proof. Localize at a prime p ∈ AG. Without changing notation, we assume AG to
be local. It follows that A is semi-local, i.e. it has a finite number of maximal ideals,
because every point in Y is image through π of a single G-orbit in X .

Since (3.5) is a closed immersion, the corresponding ring homomorphism

A⊗AG A→ A[G] (3.6)

is surjective. This means µ(A) is a generating set for M = A[G] as an A-module.
We claim there are a1, . . . , an ∈ A such that µ(a1), . . . , µ(an) is a basis for the free
module M over A.

Let m1, . . . ,mr be the finitely many maximal ideals of A. For each maximal
ideal, we can select a basis of the A/mi-vector space M/miM in the image of µ(A).
Via the Chinese Reminder Theorem, we can lift these basis to a generating subset
a1, . . . , an ∈ µ(A) of M/m1 ∩ · · · ∩mrM , where n = dimA/mi

M/miM = rkAM . By
the Nakayama Lemma, this lifts to a set of generators of M of minimal cardinality,
a basis.

The just found basis defines a map

a : AG ⊗C Cn → A, 1⊗ ei 7→ ai,
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which we claim to be an isomorphism. Consider the pair of commutative diagrams

A⊗C Cn A[G]⊗C Cn

A[G] A[G×G],

δ⊗id

µ⊗id
µ(a) µ(a)⊗id

δ

m

where m is the map corresponding to multiplication G×G→ G and commutativity
follows from the associativity property of the action. We just proved the left vertical
map is an isomorphism, hence the right one

µ(a)⊗ idC[G] : (A⊗C Cn)⊗C C[G]→ (A⊗C C[G])⊗C C[G]

is an isomorphism as well. Therefore, the induced map between their equalizers,
which is a : AG ⊗C Cn → A, is an isomorphism. This proves that (3.6) is an iso-
morphism, because it is a map between free A-modules sending the basis 1 ⊗ ai to
the basis µ(ai). It follows that (3.5) is an isomorphism, since the corresponding ring
homorphism, thought as a morphism of AG-modules, is locally an isomorphism.

Since A is a locally free AG-module, it is a flat one. In particular, AG ⊆ A is a
faithfully flat ring map [18, Tag 00HQ] and the diagram

GC ×C X X

X Y

µ

δ

π

π

is a pull-back diagram; since the left vertical map is finite, so is the right one [18,
Tag 00QP]. Finally, let p ∈ AG a prime, consider its fiber A ⊗AG κ(p) through π
and an algebraic closure k/κ(p). The fiber of the geometric point Spec k → Y has n
distinct points by assumption and is the spectrum of

A⊗AG κ(p)⊗κ(p) k,

which is an n-dimensional k-algebra by Lemma 3.3.5. It must therefore be the
product kn and A⊗AG κ(p) is étale, since its base change to an algebraic closure is
[19, Proposition 1.5.6].

Another step has to be taken before attacking the proof of Theorem 3.3.2.
Namely, we need to prove the Gal(E/F )-action on the geometric points of XE is
free.

https://stacks.math.columbia.edu/tag/00HQ
https://stacks.math.columbia.edu/tag/00QP
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Proposition 3.3.6. Let k be an algebraically closed field, G a profinite group and
A a C-algebra on which G acts continuously. The projection π : X = SpecA →
SpecAG = Y induces a bijection on geometric points

X (k)/G→ Y(k).

Proof. Notice that we only need to worry about fields k that are extensions of C,
otherwise X (k) is empty and the statement is vacuously true.

Surjectivity is easy. Since the G-action is continuous, every element x ∈ A has
finite orbit {x1, . . . , xr}, hence the extension AG ⊆ A is integral: every element is
solution to the monic polynomial

r∏
i=1

(t− xi) ∈ AG[t].

Therefore π is surjective on topological points. Any geometric point ȳ : Spec k → Y
factors through a point y ∈ Y; that is

Spec k → Specκ(y)→ Y,

where the first map corresponds to the finite extension k/κ(y). We can choose an
element x in the fiber π−1(y) and consider the diagram

Specκ(x) X

Spec k Specκ(y) Y.

π

The extension κ(x)/κ(y) is finite, hence algebraic; i.e. the dotted arrow exists.

Injectivity is more involved. Namely, we need a limit argument: let’s start by
solving the case where G is finite.

Let x0, x1 ∈ X (k) be two geometric points which live in different G-orbits. This
points and all their conjugates induce morphisms g(xi) : Ak = A ⊗ k → k. Since A
is an C-algebra, this maps are all surjective, hence correspond to maximal ideals of
Ak. By the Chinese Reminder Theorem, we can find an element f ∈ Ak such that all
g(x0) send f 7→ 0, while all g(x1) send f 7→ 1. The same holds true for the invariant
element

∏
g∈G g(f) ∈ AG. That is, π maps x0 and x1 to different geometric points

of Y.
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Now, for the limit argument, let’s write A as the filtered colimit of its subrings
AH , where H < G runs through open subgroups. Let YH = Spec(AH), so that

X (k) = lim←−
H<G

YH(k).

By the case of G finite, we know that YH(k)/(G/H) = Y(k). Therefore, if x, y ∈
X (k) map to the same element of Y(k), then their images in YH(k) lie in the same
G/H-orbit, in particular in the same G-orbit. For each H, we get a nonempty closed
subset TH ⊆ G of elements which carry the image of x in YH(k) to the image of y in
YH(k). The TH form a cofiltered system of compact spaces, thus their intersection
is non-empty; in this intersection lives an element of G carrying x to y.

We can now put all the pieces together to prove the proposition.

Proof of Proposition 3.3.2. First, assume E/F is Galois. Then the map XE → XF
corresponds to the inclusion

AF = A
Gal(E/F )
E ⊆ AE .

Notice that for every algebraically closed field k the map XF̄ (k)→ XE(k) is constant
on Gal(F̄ /E)-orbits, and therefore a quotient by the group action because of Propo-
sition 3.3.6. Hence the Galois group Gal(E/F ) acts freely on the set of geometric
points XE(k). By Proposition 3.3.3 this is enough to conclude.

For a general finite extension E/F , we can pass to a Galois closure E′/F . Then
we have maps

XE′ → XE → XF .

From what we already proved, both XE′ → XF and XE → XF are finite étale covers,
hence XE → XF has to be finite étale too.

That assessed, we can extend our construction to finite étale algebras over F : we
send a finite étale algebra E = E1 × E2 × · · · × Er to XE = XE1 t XE2 t · · · t XEr .
That is, by what we just showed, a finite étale cover, although usually not connected.
Morphisms of covering spaces are determined by morphisms between their connected
components. The whole construction is evidently functorial.

Theorem 3.3.7. The just defined functor

FinÉtCov /Spec(F )→ FinÉtCov /XF

is an equivalence.



3.3. GALOIS CORRESPONDENCE 59

Proof. The proof is substantially equivalent to the proof of the analogous Theorem
1.3.1. To prove the functor is fully faithful, it is enough to notice that Galois exten-
sion E/F are sent to Galois covers XE → XF with automorphisms group Gal(E/F ).
To prove essential surjectivity notice that

lim←−E XE = lim←−E XF̄ /Gal(F̄ /E) = XF̄ ,

over the projective system of Galois extensions E/F . Therefore a finite étale cover
Y → XF pulls back through the limit to a cover Y ′ → XF̄ , which has to be trivial
by Theorem 3.2.4. Trivialization must happen at a finite index E/F : that is, there
is a map of étale covers XE → Y. This cover is Galois, hence a quotient of XE by a
subgroup H < Aut(XE |XF ) = Gal(E/F ). This gives an isomorphism XEH → Y.

Corollary 3.3.8. Let x̄ ∈ XF a character. We have an isomorphism

Gal(F̄ /F ) ' πét
1 (XF , x̄).

Proof. In the proof of the above theorem we showed a little more, namely that the
equivalence

FinÉtCov / Spec(F )→ FinÉtCov /XF
sends the inverse system of Galois objects over F isomorphically into the inverse
system of Galois objects over XF . In particular

Gal(F̄ /F ) = lim←−E Gal(E/F ) by definition

= lim←−E Aut(XE |XF ) by full faithfulness

= lim←−E Aut(FibXE
χ ) by Galois theory

= Aut(Fibχ) via [19, Corollary 5.4.8]

= πét
1 (XF , χ). by definition.
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